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Abstract

Confidence calibration, the alignment between a model’s predicted con-1

fidence and its empirical correctness, is crucial for the trustworthiness of2

Large Language Models (LLMs), yet remains underexplored in multilin-3

gual contexts. In this work, we present the first systematic evaluation of4

multilingual calibration on human-translated benchmarks. Our analysis re-5

veals that LLMs exhibit significant disparities across languages, particularly6

underperforming in low-resource and non-Latin-script settings. To under-7

stand the source of this miscalibration, we conducted a layer-wise analysis8

and uncovered a consistent pattern: intermediate layers often yield better-9

calibrated outputs than final layers, especially for low-resource languages.10

Motivated by this finding, we introduce a suite of novel calibration methods11

that leverage these intermediate representations, including ensemble strate-12

gies and contrastive decoding. Our methods substantially improve ECE,13

Brier Score, and AUROC, outperforming the final-layer baseline by wide14

margins. These findings challenge the conventional reliance on final-layer15

decoding and suggest a new direction for achieving robust and equitable16

multilingual calibration.17

1 Introduction18

Calibration in machine learning refers to the alignment between a model’s confidence in its19

predictions and the actual probability of those predictions being correct (Guo et al., 2017;20

Tian et al., 2023; Geng et al., 2024). For example, a perfectly calibrated model that assigns21

an 80% confidence to a prediction should indeed be correct approximately 80% of the time.22

Accurate calibration is crucial in practical applications of large language models (LLMs),23

particularly in high-stakes scenarios such as medical diagnosis, legal advice, or critical24

decision-making processes (Zhang et al., 2024a;b; Yang et al., 2024b). Properly calibrated25

models can provide more reliable and interpretable confidence scores, increasing their26

trustworthiness and clearly indicating the reliability of generated responses.27

However, existing research on calibration has primarily focused on English-language set-28

tings (Tian et al., 2023; Li et al., 2024; Zhang et al., 2024b), or relied on machine-translated29

datasets (Xue et al., 2024). Model calibration in more realistic multilingual scenarios, and the30

effectiveness of calibration methods in such environments, remain largely underexplored.31

This gap is especially concerning for low-resource languages, where limited training data32

often results in poorer calibration, increasing the risk of misleading or harmful outputs in33

critical applications. Therefore, in this paper, we systematically investigate multilingual34

calibration by addressing the following research questions: RQ1: Do existing multilingual35

models exhibit different calibration performance in different languages? RQ2: What are the36

reasons of certain languages show worse calibration in transformer-based models? RQ3:37

Can we develop methods to achieve more robust and consistent confidence estimation38

across languages?39

We first empirically analyze popular LLMs (Llama, Qwen, Mistral, Babel) calibration status40

using human-translated datasets MMMLU and MKQA, covering both multiple choice and41

short-form QA in Section 3. We demonstrate that Low-Resource Languages are with lower42
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:剑桥大学中第三古老的学院是哪一个？ (What is the third
oldest college in the University of Cambridge?)
A. 耶稣学院（Jesus College）
B. 彭布罗克学院（Pembroke College）
C. 休斯学院（Hughes Hall）

… …
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Figure 1: An LLM’s layer-wise outputs for a question in Chinese. An intermediate layer
(26th) correctly identifies the answer (B), while the final layer (32nd) becomes confidently
wrong (A). This motivates our study of layer-wise calibration.

accuracy and lower calibration. Meanwhile, we point out that Latin languages show better43

calibration and accuracy compared with non-Latin languages.44

Inspired by recent insights into layer-wise multilingual representations, we examine the45

calibration status for different layers to explore the reason behind last layer uncalibration.46

Recent study suggests that intermediate layers in LLMs encode cross-lingual semantic47

knowledge in a language-agnostic manner, whereas upper layers are typically language-48

specific (Bandarkar et al., 2024; Wendler et al., 2024). Leveraging this observation, in49

Section 4, we show that different layers within multilingual models exhibit varying calibration50

quality across languages. For low-resource languages, LLMs show better calibration results in51

intermediate layers, and dramatically turn bad in last layer.52

Our finding inspired us to use intermediate layer representations to enhance calibration in53

multilingual LLMs, aiming to mitigate calibration disparities between high-resource and54

low-resource languages. In Section 5, we propose a series of novel calibration methods55

that leverage the intermediate layers to boost final calibration results. Our results demon-56

strate significant improvements in calibration performance, particularly for low-resource57

languages. This study provides valuable insights and methodological contributions to-58

wards achieving reliable multilingual calibration, paving the way for more equitable and59

trustworthy deployment of LLMs globally. Our contributions are listed as follows:60

• We provide a comprehensive empirical analysis of calibration in multilingual61

LLMs on human-translated datasets, revealing significant disparities between high-62

resource and low-resource languages.63

• We are the first to investigate layer-wise calibration, showing that intermediate64

layers often exhibit better calibration for low-resource languages compared to the65

final layer.66

• We propose novel calibration methods that leverage intermediate layer represen-67

tations, demonstrating their effectiveness in improving calibration and reducing68

performance gaps across languages.69

2 Related Work70

Multilingual Calibration Recent work has highlighted that modern LLMs, despite their71

strong performance, often generate overconfident predictions (Xiong et al., 2024; Zhang72
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et al., 2024a). Calibration techniques are thus in need to mitigate the overconfidence issue73

Geng et al. (2023), but it is underexplored in multilingual setting. Seminal work by Ahuja74

et al. (2022) first established that massively multilingual models like mBERT and XLM-75

R are poorly calibrated, especially for low-resource and typologically distant languages.76

Subsequent research has confirmed that this problem persists and may even be ampli-77

fied in modern generative models. For instance, Yang et al. (2023) specifically evaluated78

multilingual question-answering LLMs and found substantial calibration gaps between79

high-resource and low-resource languages. Expanding this line of research, Xue et al. (2024)80

conducted a comprehensive study across various models, covering both language-agnostic81

and language-specific tasks. However, all datasets in their study were translated by machine,82

which can potentially import bias. These studies collectively establish a critical performance83

bottleneck: even when models achieve reasonable accuracy, their reliability is undermined84

by poor multilingual calibration. However, they primarily focus on documenting this phe-85

nomenon at the final output layer. The architectural origins of this cross-lingual calibration86

deficit remain underexplored, motivating our work to investigate calibration dynamics87

within the internal layers of the model.88

Layer-wise Representations A growing body of research investigates the functional spe-89

cialization of layers within multilingual transformers. It is widely observed that intermediate90

layers encode cross-lingual semantic knowledge in a largely language-agnostic manner,91

forming a shared representational space (Bandarkar et al., 2024). In contrast, the final92

layers tend to be more language-specific, adapting these general representations to handle93

surface-level features like syntax and word order for the target language. Recent studies on94

predominantly English-trained LLMs, such as LLaMA, suggest a more specific mechanism:95

these models often process multilingual text by mapping it to an internal English-based96

representation in the middle layers, before translating it back to the target language in the97

final layers (Wendler et al., 2024; Kojima et al., 2024; Alabi et al., 2024). This ”latent English”98

hypothesis explains the empirical success of prompting strategies that explicitly ask the99

model to ”think in English” before generating a response in another language, as this aligns100

with the model’s internal processing pathway (Shi et al., 2022; Zhang et al., 2024c). Our101

work builds on these insights by exploring the implications of this layer-wise specialization102

for model calibration.103

3 Benchmarking Multilingual Calibration on Human-Translated104

Datasets105

3.1 Experiment Setup106

Datasets and Models Previous work has mainly used machine-translated question-107

answering pairs (Xue et al., 2024), which may introduce potential biases. We therefore108

use human-translated datasets with both multiple-choice and short-form question answer-109

ing: (1) MMMLU (Hendrycks et al., 2020) and (2) MKQA (Longpre et al., 2021). For our110

experiments, we evaluate a suite of recent large language models: Llama3-8B (Grattafiori111

et al., 2024), Mistral-7B (Jiang et al., 2023), Qwen2-7B (Yang et al., 2024a), and Babel (Zhao112

et al., 2025).113

Confidence Elicitation Methods and Metrics For the MMMLU dataset, which consists of114

multiple-choice questions, we use the log probability of the chosen answer as the model’s115

confidence. For the MKQA dataset, which contains short-form answers, we explore three116

different confidence elicitation methods: (1) the log probability of the generated sequence117

(log prob), (2) the probability of the model generating a ”true” token after being presented118

with the question and its answer (ptrue), and (3) verbalized confidence where the model119

explicitly states its confidence level. To evaluate calibration and accuracy, we use four pri-120

mary metrics: Area Under the Receiver Operating Characteristic Curve (AUROC), Expected121

Calibration Error (ECE), the Brier Score, and overall Accuracy.122
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Language AUROC ECE BRIER Accuracy

Arabic 61.00 33.06 24.37 38.20
Bengali 58.44 24.93 23.39 35.20
German 65.36 25.81 24.92 44.40
English 80.36 4.61 17.63 61.20
Spanish 71.65 18.21 21.89 52.00
French 71.39 13.87 22.75 51.30
Hindi 62.07 28.31 24.28 39.90
Indonesian 66.25 19.67 23.76 45.00
Italian 71.57 21.19 22.74 51.80
Japanese 61.73 28.36 27.27 43.00
Korean 62.59 30.86 25.06 42.50
Portuguese 71.37 10.51 21.76 50.40
Swahili 61.10 23.84 21.45 32.20
Yoruba 58.00 8.18 19.43 27.40
Chinese 50.63 41.94 19.56 23.10

Avg. Low-Resource 61.14 23.00 22.78 36.32
Avg. High-Resource 67.41 21.71 22.62 46.63
Avg. Latin-Script 71.14 16.27 22.21 50.87
Avg. Non-Latin-Script 59.44 27.44 23.10 35.19

Average (All Languages) 64.90 22.22 22.68 42.51

Table 1: Performance comparison across languages for AUROC, ECE, BRIER score, and
Accuracy in LLaMA3, evaluated on the MMMLU dataset.

3.2 Results123

Our evaluation, summarized in Table 1 for the LLaMA3 model on the MMMLU dataset,124

reveals notable performance disparities across various languages. We observe consistent125

patterns for Mistral 7B (Table 4), Qwen 2 7B (Table 6), and Babel (Table 5), which are provided126

in the Appendix.127

LLM Calibration is Lacking in Low-Resource Languages As shown in Table 1, there is128

a clear trend of poorer calibration for low-resource languages. The average ECE for low-129

resource languages is 23.00%, which is substantially higher than the 4.61% ECE for English,130

indicating that the model’s confidence scores in these languages are less aligned with the131

actual likelihood of correctness. Similarly, the average Brier score for low-resource languages132

is 22.78, again higher than that for high-resource languages. For instance, languages such133

as Arabic, Hindi, and Korean exhibit high ECE values of 33.06%, 28.31%, and 30.86%,134

respectively, underscoring this calibration challenge.135

Low-resource languages show lower accuracy. A direct correlation between the resource136

level of a language and the model’s accuracy is also evident. The average accuracy for137

low-resource languages is a mere 36.32%, starkly contrasting with the 61.20% accuracy138

achieved in English and the 46.63% average for high-resource languages. Languages like139

Swahili, Yoruba, and Chinese show particularly low accuracy scores of 32.20%, 27.40%, and140

23.10%, respectively. This suggests that the model’s reasoning and knowledge retrieval141

capabilities are significantly weaker in these languages.142

Latin languages show better calibration and accuracy compared with non-Latin languages.143

Our results also highlight a performance gap between languages based on their script. Latin-144

script languages achieve an average accuracy of 50.87% and an average ECE of 16.27%. In145

contrast, non-Latin-script languages have a significantly lower average accuracy of 35.19%146

and a much higher average ECE of 27.44%, indicating poorer calibration. This disparity is147

consistent across all metrics, with Latin-script languages showing a higher average AUROC148

(71.14% vs. 59.44%) and a slightly lower (better) Brier score (22.21% vs. 23.10%). This149

suggests that the predominantly Latin-character-based pre-training of many foundational150

models may disadvantage languages with different writing systems.151
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Figure 2: ECE vs. entropy across layers on the MMMLU subset for LLaMA3. In the
multilingual setting, many languages achieve their lowest (best) ECE in intermediate layers
(e.g., 22-26), after which calibration quality degrades towards the final layer. This contrasts
with the English-only setting, where calibration improves monotonically (see Figure 3).

4 Mid-Layers Reveal Better Calibration152

To understand the source of the poor calibration observed in the final layer, especially for153

low-resource languages, we investigate how calibration evolves throughout the model’s154

depth. We hypothesize that the final layers, which may over-specialize in high-resource155

languages like English, could be detrimental to the calibration of other languages.156

4.1 Methodology for Layer-Wise Early Decoding157

To investigate how calibration evolves across the depth of the model, we adopt a layer-wise158

probing technique inspired by the early exiting paradigm (Elbayad et al., 2020). Instead of159

applying the modeling head only to the final hidden state, we attach it to each intermediate160

transformer layer. This allows us to extract logits and compute prediction confidence from161

every layer, providing a granular view of the model’s decision-making process.162

Formally, let hℓ ∈ Rd denote the hidden representation at layer ℓ, where ℓ = 1, . . . , L, and d163

is the dimensionality of the hidden state. We apply the original language modeling head,164

with weight matrix W ∈ RV×d, to compute the logits at each layer:165

zℓ = Whℓ

where zℓ ∈ RV are the unnormalized token logits over the vocabulary of size V. These logits166

are then converted into probabilities using the softmax function, from which we derive the167

predicted token and its confidence at each layer:168

pℓ = softmax(zℓ), ŷℓ = arg max
v

[pℓ]v

To quantify the model’s uncertainty at each stage, we also compute the entropy of the169

probability distribution for each layer:170

Hℓ = −
V

∑
v=1

[pℓ]v log2[pℓ]v
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4.2 Multilingual Language Models Calibrate Earlier171

Calibration improves as expected in English-only settings. We first establish a baseline172

by conducting a layer-wise analysis in an English-only setting. As shown in Figure 3 for173

Llama 3, we observe a clear and expected trend: calibration improves monotonically with174

layer depth. ECE is high in the early layers and steadily decreases, reaching its minimum175

at the final layer. This aligns with the conventional understanding that representations176

become progressively more refined and task-specific, leading to greater confidence and177

better calibration as data propagates through the network.178

Multilingual settings reveal a surprising calibration peak in middle layers. However,179

our analysis reveals a strikingly different pattern in the multilingual context. As illustrated180

in Figure 2, the best calibration performance for many languages does not occur at the181

final layer. Instead, we find that ECE often reaches its minimum in the late-intermediate182

layers (typically between layers 22 and 26 for a 32-layer model), after which calibration183

quality worsens as the signal proceeds to the final output layer.184

Final-layer specialization may degrade multilingual calibration. This phenomenon is185

particularly pronounced for low- and mid-resource languages. It suggests that while186

intermediate layers may capture a well-calibrated, language-agnostic representation, the187

final layers might be overfitting to the patterns of dominant languages (i.e., English) or188

introducing noise during the final language-specific adaptation phase. This could harm189

calibration for less-represented languages, whose representations might be distorted by this190

final step.191

The mid-layer calibration peak is a robust finding across models. This critical observation192

is not isolated to a single model or metric. We consistently find this pattern across multiple193

architectures and evaluation metrics, as detailed in the Appendix. For models like LLaMA3194

(Figure 4), Cohere (Figure 5), Mistral (Figure 6), and others, calibration (measured by ECE,195

Brier score, and AUROC) improves through the deep layers, hits an optimal point in the196

middle, and then deteriorates. This core finding motivates the novel calibration methods197

proposed in the next section, which aim to leverage these better-calibrated intermediate198

representations.199

5 Improving Low-Resource Calibration200

Building on our observations from the previous section, we find that calibration performance201

often peaks at intermediate layers, particularly for low-resource languages. This suggests a202

promising direction: rather than relying solely on the final layer, we can develop calibration203

methods that explicitly leverage the strengths of intermediate representations. Below, we204

outline several such methods and their variations, each designed to enhance calibration in205

multilingual settings by taking advantage of these findings.206

5.1 Layer-wise Calibration Methods207

Method 1: Best Layer208

From our empirical analysis (Figure 2), we identify that the model achieves optimal cali-209

bration at certain intermediate layers. We define the ”best” layer as the one that minimizes210

ECE on a held-out validation set. Formally, let ECEℓ denote the ECE computed from the211

output probabilities at layer ℓ. The best-performing layer ℓ∗ is then selected as:212

ℓ∗ = arg min
ℓ∈{1,...,L}

ECEℓ

We then use the output probabilities from layer ℓ∗ for downstream prediction and calibration-213

sensitive decision making. This approach is both simple and effective, requiring no addi-214

tional parameters or training while leveraging empirical calibration dynamics.215
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Method 2: Best+Last Ensemble216

To leverage complementary strengths of both intermediate and final layers, we propose a217

method that ensembles outputs from the best-calibrated layer ℓ∗ and the final layer L. We218

explore two strategies:219

(1) Probability Averaging: Compute the average of the softmax probabilities from both220

layers:221

pensemble =
1
2
(softmax(Whℓ∗) + softmax(WhL))

(2) Hidden State Averaging: Compute the average of the hidden states before applying the222

output head and softmax:223

pensemble = softmax
(

W · 1
2
(hℓ∗ + hL)

)
This method allows the model to combine calibration-aware signals from intermediate224

layers with the semantic richness of the final layer, often resulting in improved overall225

calibration.226

Method 3: Good Layers Pooling227

Rather than selecting a single intermediate layer, we identify a set of layers that are better228

calibrated than the final layer and treat them collectively as ”good” layers. Specifically, we229

define the set of good layers G as:230

G = {ℓ : ECEℓ < ECEL}
We then explore two ensembling strategies, same as method 2:231

(1) Probability Averaging:232

pensemble =
∑ℓ∈G softmax(Whℓ) + softmax(WhL)

|G|+ 1

(2) Hidden State Averaging:233

pensemble = softmax
(

W · ∑ℓ∈G hℓ + hL

|G|+ 1

)
This approach integrates broader calibration-aware signals from multiple intermediate234

layers, potentially smoothing out noise from any individual layer and capturing more235

robust confidence estimates.236

Method 4: Contrastive Layer Decoding237

Inspired by contrastive decoding methods (e.g., Li et al. (2023)), we propose to enhance238

calibration by contrasting the final layer with the best-calibrated intermediate layer. The intu-239

ition is to use the calibrated intermediate signal to guide and correct the often overconfident240

final prediction.241

Let pℓ∗ and pL denote the softmax probability distributions from the best and final layers,242

respectively. We compute the contrastive log-probability vector as:243

pcontrast = softmax (log pℓ∗ − α · log pL)

where α is a tunable contrastive strength parameter.244

Method 5: Hidden State Steering245

To improve calibration without modifying the model head, we steer the final hidden state246

toward the better-calibrated intermediate representation. Let hL and hℓ∗ be the hidden states247

from the final and best layers, respectively. We compute a steering vector ∆h = hℓ∗ − hL248

and apply it with a tunable weight β:249

psteered = softmax (W(hL + β · ∆h))

This method gently shifts the final representation in the direction of the calibrated interme-250

diate signal, improving output confidence without disrupting task semantics.251
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Method ECE ↓ Brier Score ↓ AUROC ↑

BEST LAYER (29) 13.51 21.92 73.01
BEST+LAST ENSEMBLE (PROB AVG) 12.26 20.32 72.76
GOOD LAYERS ENSEMBLE (PROB AVG) 12.33 19.84 74.68
BEST+LAST ENSEMBLE (HIDDEN AVG) 9.95 20.28 74.36
GOOD LAYERS ENSEMBLE (HIDDEN AVG) 10.03 19.96 75.55
CONTRASTIVE DECODING 14.97 22.55 72.76
HIDDEN STATE STEERING 17.11 24.05 73.90
CALIBRATION HEAD (TRAINED) 27.96 39.64 54.83

FINAL LAYER (32) 22.28 22.79 64.56

Table 2: Calibration performance of proposed methods on MMMLU using LLaMA3. Lower
is better for ECE and Brier; higher is better for AUROC. Best values in bold.

Method 6: Calibration Head Training252

We propose training a lightweight MLP that operates directly on the best intermediate253

representation to predict a small set of target classes. Given the hidden state hℓ∗ from the254

best layer, we define a learnable projection head Wcal ∈ RC×d, where C is the number of255

task-specific classes (e.g., C = 4 for MMMLU). The calibrated prediction is computed as:256

pcal = softmax(Wcalhℓ∗)

This calibration head is trained using a supervised loss (cross-entropy) on held-out data.257

5.2 Calibration Results258

Our proposed methods substantially outperform the final-layer baseline. As shown in259

Table 2, our evaluation on the MMMLU dataset with LLaMA3 confirms the effectiveness260

of our approach. This demonstrates a consistent advantage in moving beyond final-layer261

outputs for calibration.262

Aggregating signals from multiple well-calibrated layers yields the most robust results.263

Among our methods, the Good Layers Ensemble (Hidden Avg) emerges as the top per-264

former in overall metrics. It achieves the best AUROC (75.55) and Brier Score (19.96),265

supporting our hypothesis that combining the representations from multiple high-quality266

intermediate layers leads to more stable and reliable predictions.267

A simpler ensemble of the best and final layers also offers strong performance. The268

Best+Last Ensemble (Hidden Avg) also proves highly competitive, securing the lowest269

ECE of just 9.95. This result is particularly compelling as it suggests that even a simple,270

two-layer combination can dramatically improve calibration without introducing significant271

complexity, making it a practical and effective solution.272

Our findings confirm the value of leveraging intermediate representations. Ultimately,273

the results validate our central thesis: using intermediate representations—whether through274

direct selection, ensembling, or other decoding strategies—is a powerful technique for275

enhancing multilingual calibration. By empirically identifying and utilizing the better-276

calibrated parts of the model, we can mitigate the issues observed at the final layer.277

5.3 Intermediate Representations Also Improve Accuracy278

We find that better calibration can also lead to improved task accuracy. Beyond improv-279

ing calibration, we investigated whether these intermediate representations could enhance280

task performance itself. To test this, we replaced the final-layer hidden state with the states281

derived from our top-performing methods (Best Layer, Best+Last Ensemble, and Good282

Layers Ensemble) and used them for final prediction without any re-training.283
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Language True Acc. (%) Best Layer (%) Best+Last (%) Good Layers (%)

Arabic 38.2 38.9 40.4 40.9
Bengali 35.3 34.6 35.5 37.4
German 44.6 47.7 49.1 51.0
English 60.8 60.3 61.1 61.3
Spanish 52.2 52.9 53.1 53.4
French 51.5 52.6 53.2 52.7
Hindi 39.0 39.6 41.1 41.6
Indonesian 45.1 46.2 46.5 46.7
Italian 51.9 54.8 54.4 55.0
Japanese 44.0 49.2 50.4 50.8
Korean 42.4 45.4 46.3 47.1
Portuguese 50.3 51.3 51.1 51.3
Swahili 32.3 37.9 37.6 37.6
Yoruba 27.0 29.4 29.8 29.9
Chinese 23.1 47.8 48.2 49.9

Average 42.51 45.91 46.52 47.11

Table 3: True accuracy vs. predicted accuracy across languages and calibration strategies on
MMMLU (LLaMA3). Predictions are based the top-1 probabilities from each method.

The ensembling methods provide consistent accuracy gains across languages. The284

results, presented in Table 3, are striking. These alternative representations lead to consistent285

accuracy improvements across nearly every language. The GOOD LAYERS ENSEMBLE is286

again a standout, boosting the average accuracy to 47.11%—a 4.6% absolute improvement287

over the final-layer baseline (42.51%). This demonstrates that the benefits of our methods288

are not confined to calibration alone.289

Improved accuracy likely stems from more robust and less noisy representations. This290

finding is particularly noteworthy because the hidden states were optimized purely for291

calibration, not accuracy. We hypothesize this dual benefit arises because: (1) intermediate292

representations retain richer multilingual signals before final-layer overspecialization, (2)293

ensembling averages out layer-specific noise, leading to more stable predictions, and (3)294

better-calibrated representations are inherently more discriminative, which directly aids295

task performance. This suggests that pursuing better calibration can be a pathway to more296

accurate and reliable multilingual models overall.297

6 Conclusion298

We present the first systematic evaluation of multilingual calibration on human-translated299

benchmarks, confirming that large language models are poorly calibrated, particularly for300

low-resource and non-Latin-script languages. Our key finding is that calibration quality301

does not monotonically improve with model depth; instead, for many languages, it peaks at302

intermediate layers before degrading at the final output. Motivated by this discovery, we303

propose a suite of novel methods that leverage these more reliable intermediate representa-304

tions, including layer ensembling and contrastive decoding. Our experiments demonstrate305

that these approaches not only substantially improve calibration metrics such as ECE and306

Brier score but also yield significant gains in task accuracy across languages. This research307

challenges the conventional wisdom of relying solely on the final layer for multilingual308

generation and suggests a new direction for building more robust and equitable models by309

harnessing the well-calibrated knowledge within the network’s intermediate layers.310
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models achieve calibration with in-context learning? In ICLR 2024 Workshop on Reliable363

and Responsible Foundation Models, 2024.364

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto,365

Luke Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation366

as optimization, 2023. URL https://arxiv.org/abs/2210.15097.367

Shayne Longpre, Yi Lu, and Joachim Daiber. MKQA: A linguistically diverse benchmark368

for multilingual open domain question answering. Transactions of the Association for369

Computational Linguistics, 9:1389–1406, 2021. doi: 10.1162/tacl a 00433. URL https:370

//aclanthology.org/2021.tacl-1.82/.371

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,372

Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, et al. Language models are373

multilingual chain-of-thought reasoners. arXiv preprint arXiv:2210.03057, 2022.374

Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao,375

Chelsea Finn, and Christopher Manning. Just ask for calibration: Strategies for eliciting376

calibrated confidence scores from language models fine-tuned with human feedback. In377

Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on378

Empirical Methods in Natural Language Processing, pp. 5433–5442, Singapore, December379

2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.330.380

URL https://aclanthology.org/2023.emnlp-main.330/.381

Chris Wendler, Veniamin Veselovsky, Giovanni Monea, and Robert West. Do llamas work382

in English? on the latent language of multilingual transformers. In Lun-Wei Ku, Andre383

Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association384

for Computational Linguistics (Volume 1: Long Papers), pp. 15366–15394, Bangkok, Thailand,385

August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.386

820. URL https://aclanthology.org/2024.acl-long.820/.387

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can llms388

express their uncertainty? an empirical evaluation of confidence elicitation in llms. In The389

Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May390

7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=gjeQKFxFpZ.391

Boyang Xue, Hongru Wang, Rui Wang, Sheng Wang, Zezhong Wang, Yiming Du, Bin Liang,392

and Kam-Fai Wong. Mlingconf: A comprehensive study of multilingual confidence393

estimation on large language models. arXiv preprint arXiv:2410.12478, 2024.394

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,395

Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong396

Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin397

Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin398

Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui399

Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao400

Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu401

Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang,402

Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao403

Fan. Qwen2 technical report, 2024a. URL https://arxiv.org/abs/2407.10671.404

Ruihan Yang, Caiqi Zhang, Zhisong Zhang, Xinting Huang, Sen Yang, Nigel Collier, Dong405

Yu, and Deqing Yang. Logu: Long-form generation with uncertainty expressions, 2024b.406

URL https://arxiv.org/abs/2410.14309.407

Yahan Yang, Soham Dan, Dan Roth, and Insup Lee. On the calibration of multilingual408

question answering llms, 2023.409

Caiqi Zhang, Fangyu Liu, Marco Basaldella, and Nigel Collier. LUQ: Long-text uncertainty410

quantification for LLMs. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),411

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,412

11

https://arxiv.org/abs/2210.15097
https://aclanthology.org/2021.tacl-1.82/
https://aclanthology.org/2021.tacl-1.82/
https://aclanthology.org/2021.tacl-1.82/
https://aclanthology.org/2023.emnlp-main.330/
https://aclanthology.org/2024.acl-long.820/
https://openreview.net/forum?id=gjeQKFxFpZ
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2410.14309


Under review as a conference paper at COLM 2025

pp. 5244–5262, Miami, Florida, USA, November 2024a. Association for Computational413

Linguistics. doi: 10.18653/v1/2024.emnlp-main.299. URL https://aclanthology.org/414

2024.emnlp-main.299/.415

Caiqi Zhang, Ruihan Yang, Zhisong Zhang, Xinting Huang, Sen Yang, Dong Yu, and Nigel416

Collier. Atomic calibration of llms in long-form generations, 2024b.417

Zhihan Zhang, Dong-Ho Lee, Yuwei Fang, Wenhao Yu, Mengzhao Jia, Meng Jiang, and418

Francesco Barbieri. PLUG: Leveraging pivot language in cross-lingual instruction tuning.419

In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual420

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7025–421

7046, Bangkok, Thailand, August 2024c. Association for Computational Linguistics. doi:422

10.18653/v1/2024.acl-long.379. URL https://aclanthology.org/2024.acl-long.379/.423

Yiran Zhao, Chaoqun Liu, Yue Deng, Jiahao Ying, Mahani Aljunied, Zhaodonghui Li,424

Lidong Bing, Hou Pong Chan, Yu Rong, Deli Zhao, and Wenxuan Zhang. Babel: Open425

multilingual large language models serving over 90426

12

https://aclanthology.org/2024.emnlp-main.299/
https://aclanthology.org/2024.emnlp-main.299/
https://aclanthology.org/2024.emnlp-main.299/
https://aclanthology.org/2024.acl-long.379/


Under review as a conference paper at COLM 2025

A Full Results427

A.1 LLMs Are Not Calibrated in Low-Resource Languages428

• Dataset 1: MMMLU (Hendrycks et al., 2020)429

– Table 1: LLaMA3 calibration metrics across languages430

– Table 4: Mistral calibration metrics across languages431

– Table 5: Babel calibration metrics across languages432

– Table 6: Qwen calibration metrics across languages433

Language AUROC ECE BRIER Accuracy

Bengali 64.56 49.70 11.72 0.10
German 70.84 24.14 29.32 43.00
Spanish 71.33 21.64 26.79 42.90
French 71.25 22.20 28.36 46.40
Hindi 75.08 39.77 6.23 1.60
Indonesian 69.48 26.98 29.69 38.80
Italian 74.08 25.24 28.25 44.50
Japanese 56.09 44.15 15.48 6.50
Korean 39.78 46.62 16.25 5.50
Portuguese 71.11 29.25 27.59 47.10
Swahili 56.02 30.81 27.34 26.30
Yoruba 44.79 44.18 21.99 16.10
Chinese 62.12 33.55 24.58 16.70

Avg. Low-Resource 61.99 38.29 19.39 16.58
Avg. High-Resource 64.58 30.85 24.58 31.58
Avg. Latin-Script 71.35 24.91 28.33 43.78
Avg. Non-Latin-Script 56.92 41.25 17.66 10.40

Average (All Languages) 63.61 33.74 22.56 25.76

Table 4: Performance comparison across languages for AUROC, ECE, BRIER score, and
Accuracy using Mistral on the MMMLU dataset.

Language AUROC ECE BRIER Accuracy

Arabic 72.52 5.12 21.32 51.70
Bengali 69.42 14.08 19.35 31.00
German 75.66 8.22 19.85 57.00
Spanish 78.22 6.65 18.94 59.10
French 74.35 7.23 20.04 59.60
Hindi 64.91 16.07 22.01 37.20
Indonesian 79.00 5.22 18.64 56.80
Italian 77.86 4.74 18.92 59.50
Japanese 67.60 37.98 15.96 19.20
Korean 60.43 35.34 20.31 26.10
Portuguese 75.60 9.09 20.11 57.40
Swahili 66.53 6.04 21.65 38.80
Yoruba 18.59 50.08 25.27 5.50
Chinese 70.67 16.63 18.67 24.20

Avg. Low-Resource 61.83 16.10 21.37 36.83
Avg. High-Resource 72.55 15.74 19.10 45.26
Avg. Latin-Script 76.78 6.86 19.42 58.23
Avg. Non-Latin-Script 61.33 22.67 20.57 29.21

Average (All Languages) 67.99 15.77 20.08 41.81

Table 5: Performance comparison across languages for AUROC, ECE, BRIER score, and
Accuracy using Babel on the MMMLU dataset.
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Language AUROC ECE BRIER Accuracy

Arabic 67.15 14.30 26.67 54.90
Bengali 64.10 26.68 31.98 33.20
German 76.94 21.59 25.08 55.60
Spanish 76.95 19.26 23.98 61.10
French 75.65 16.92 22.88 62.20
Hindi 72.01 28.73 28.86 33.90
Indonesian 75.69 15.83 23.53 54.30
Italian 75.32 21.07 24.46 58.70
Japanese 80.03 6.71 17.10 33.10
Korean 74.15 17.60 25.75 52.20
Portuguese 75.85 18.86 23.61 58.40
Swahili 59.93 30.12 33.09 32.30
Yoruba 23.49 46.99 36.11 2.00
Chinese 85.31 12.47 17.42 47.00

Avg. Low-Resource 60.40 27.11 30.04 35.10
Avg. High-Resource 77.53 16.81 22.54 53.54
Avg. Latin-Script 76.07 18.92 23.92 58.38
Avg. Non-Latin-Script 65.77 22.95 27.12 36.08

Average (All Languages) 70.13 21.27 25.79 45.67

Table 6: Performance comparison across languages for AUROC, ECE, BRIER score, and
Accuracy using Qwen on the MMMLU dataset.

Dataset Conf. Avg en fr ja th zh
ARC. ECE BRR ARC. ECE BRR ARC. ECE BRR ARC. ECE BRR ARC. ECE BRR ARC. ECE BRR

SciQ

Accuracy 30.07 30.07 30.07 60.13 60.13 60.13 41.14 41.14 41.14 14.56 14.56 14.56 11.87 11.87 11.87 22.63 22.63 22.63
Prob 73.01 24.83 25.46 71.73 6.90 20.74 74.05 15.72 23.80 75.19 31.60 25.79 74.89 38.52 29.19 69.17 31.43 27.77
True 71.67 43.62 39.20 69.66 21.29 27.00 67.76 40.54 39.31 76.37 50.43 42.73 68.80 57.73 45.45 75.76 48.11 41.49
Verb 62.68 31.51 40.44 67.02 21.60 29.51 60.63 25.03 32.94 67.37 38.54 51.89 65.23 40.27 50.31 53.17 32.12 37.56

common

Accuracy 35.28 35.28 35.28 75.35 75.35 75.35 46.68 46.68 46.68 15.12 15.12 15.12 17.31 17.31 17.31 21.94 21.94 21.94
Prob 70.60 28.07 25.71 79.69 18.23 16.35 67.51 16.17 25.01 64.84 35.05 26.87 75.32 37.74 27.19 65.66 33.17 33.11
True 64.81 33.07 33.33 63.49 4.98 17.94 64.89 27.44 30.79 70.99 50.48 41.30 56.31 38.69 38.74 68.35 43.77 37.87
Verb 62.97 31.37 38.51 61.45 26.11 19.58 57.71 24.00 35.80 68.59 37.11 52.08 71.99 37.16 44.10 55.09 32.48 40.99

triviaqa

Accuracy 31.02 31.02 31.02 66.18 66.18 66.18 48.94 48.94 48.94 15.61 15.61 15.61 10.65 10.65 10.65 13.74 13.74 13.74
Prob 82.73 24.08 21.27 80.48 10.82 17.27 77.91 15.64 21.85 87.45 23.70 18.09 88.57 34.23 21.14 79.22 36.02 28.01
True 74.69 42.27 36.74 74.60 26.05 21.52 70.23 32.64 32.35 72.92 50.91 42.88 74.93 53.82 43.90 80.78 47.92 43.06
Verb 71.16 33.87 41.05 78.94 21.18 23.47 70.05 30.50 32.78 69.39 34.05 50.25 73.09 40.08 55.85 64.31 43.56 42.92

Table 7: Experimental results of AUROC (ARC.), ECE and Brier on various datasets. meta-
llama/Llama-3.1-8B-Instruct Accracy is RPEM.

• Dataset 2: SciQ, Common, TriviaQA (Xue et al., 2024)434

– Table 7: LLaMA3 PREM results in SciQ, Common, TriviaQA435

– Table 8: Mistral PREM results in SciQ, Common, TriviaQA436

– Table 9: Qwen PREM results in SciQ, Common, TriviaQA437

– Table 10: Babel PREM results in SciQ, Common, TriviaQA438

• Dataset 3: MKQA (Longpre et al., 2021)439

– Table 11: MKQA results with ECE metrics with three models: LLaMA3, Mistral440

and Qwen441
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Dataset Conf. Avg en fr ja th zh
ARC. ECE BRR ARC. ECE BRR ARC. ECE BRR ARC. ECE BRR ARC. ECE BRR ARC. ECE BRR

SciQ

Accuracy 27.69 27.69 27.69 57.28 57.28 57.28 37.66 37.66 37.66 16.46 16.46 16.46 2.69 2.69 2.69 24.37 24.37 24.37
Prob 73.10 35.03 29.86 76.15 26.51 24.86 69.93 29.62 31.42 77.09 37.33 29.48 66.07 47.93 33.31 76.26 33.76 30.22
True 64.43 39.93 43.30 64.48 35.62 36.42 66.84 30.81 45.55 64.16 43.74 49.68 64.40 53.13 33.32 62.29 36.35 51.52
Verb 64.41 40.54 43.77 62.27 39.66 36.07 67.27 30.05 44.74 64.15 43.67 53.36 63.18 45.55 34.86 65.19 43.77 49.80

common

Accuracy 48.74 48.74 48.74 74.13 74.13 74.13 49.83 49.83 49.83 40.38 40.38 40.38 30.68 30.68 30.68 48.69 48.69 48.69
Prob 59.29 33.63 37.29 61.50 10.87 19.24 61.86 24.56 29.10 58.50 41.55 45.35 55.82 51.90 54.55 58.77 39.26 38.21
True 56.61 27.87 40.24 55.74 23.29 23.39 56.33 26.54 41.31 55.47 30.69 48.42 58.62 30.96 44.59 56.91 27.86 43.51
Verb 53.32 29.74 43.28 50.73 27.62 24.55 56.25 24.08 42.67 51.92 37.58 51.22 53.94 30.09 53.41 53.77 29.31 44.55

triviaqa

Accuracy 27.79 27.79 27.79 68.37 68.37 68.37 45.69 45.69 45.69 10.16 10.16 10.16 4.23 4.23 4.23 10.49 10.49 10.49
Prob 81.37 30.68 23.39 74.67 15.56 20.08 73.76 28.22 26.45 86.30 33.92 25.14 84.16 40.71 22.12 87.95 34.99 23.14
True 68.13 36.15 40.07 70.48 16.58 21.69 70.48 29.22 33.59 66.61 43.65 49.56 65.03 45.52 36.95 68.07 45.80 58.58
Verb 66.82 43.66 45.39 72.04 30.88 23.79 69.83 43.53 36.83 62.96 44.59 57.21 59.76 49.28 50.41 69.49 50.04 58.71

Table 8: Experimental results of AUROC (ARC.), ECE and brier on various datasets. Infer-
ence & Confidence done on mistralai/Mistral-7B-Instruct-v0.3. Accracy is RPEM.

Dataset Conf. Avg en fr ja th zh
ARC. ECE BRR ARC. ECE BRR ARC. ECE BRR ARC. ECE BRR ARC. ECE BRR ARC. ECE BRR

SciQ

Accuracy 39.69 39.69 39.69 62.82 62.82 62.82 43.83 43.83 43.83 27.69 27.69 27.69 23.58 23.58 23.58 40.51 40.51 40.51
Prob 63.63 29.15 30.86 61.67 18.50 23.92 70.23 29.33 32.11 60.72 32.87 30.71 67.09 37.38 34.77 58.45 27.66 32.77
True 46.81 34.37 50.24 51.69 28.70 34.67 53.32 35.19 50.81 46.89 39.36 61.41 35.35 37.08 53.83 46.82 31.50 50.50
Verb 64.32 32.89 37.63 60.29 26.21 29.01 64.49 38.15 37.96 69.09 36.87 38.71 64.96 35.29 42.41 62.76 27.93 40.08

common

Accuracy 58.09 58.09 58.09 80.86 80.86 80.86 61.89 61.89 61.89 43.88 43.88 43.88 50.17 50.17 50.17 53.67 53.67 53.67
Prob 63.51 28.33 29.88 75.66 23.28 14.28 59.12 28.71 29.88 60.09 27.75 34.86 65.51 38.67 38.15 57.18 23.26 32.21
True 56.10 25.28 38.50 60.31 13.82 17.68 56.47 24.17 35.17 55.90 35.97 51.30 51.31 26.47 45.34 56.50 25.99 42.99
Verb 62.79 18.70 28.21 71.27 14.53 13.67 58.61 22.99 27.97 62.69 21.22 34.98 60.13 19.02 32.52 61.26 15.75 31.90

triviaqa

Accuracy 25.56 25.56 25.56 45.93 45.93 45.93 30.08 30.08 30.08 15.45 15.45 15.45 14.31 14.31 14.31 22.03 22.03 22.03
Prob 81.01 34.89 29.00 85.51 37.26 25.41 78.59 31.37 29.56 81.18 31.98 26.73 85.49 34.90 26.93 74.30 38.92 36.38
True 42.71 40.39 61.27 58.44 35.99 49.94 48.62 38.55 65.48 34.81 47.95 68.56 35.44 35.48 57.25 36.24 44.00 65.11
Verb 81.39 33.78 25.76 81.72 25.58 20.63 82.87 31.85 23.97 82.31 38.54 25.25 81.26 38.79 29.94 78.79 34.15 29.03

Table 9: Experimental results of AUROC (ARC.), ECE and Brier on various datasets. Infer-
ence & Confidence done on Qwen/Qwen2.5-7B-Instruct. Accracy is RPEM.

A.2 Layer-Wise Calibration Analysis442

A.2.1 English Calibration improves as layer deepens443

As shown in Figure 3, calibration in English steadily improves as the model progresses444

through deeper layers, with lower ECE observed alongside increasing entropy.445

A.2.2 Multilingual Calibration is Best at Late-Intermediate Layers446

We visualize calibration performance across layers by plotting metrics against entropy on447

the MMMLU dataset. Across all models, we observe that ECE, Brier score, and AUROC448

improve (lower ECE/Brier, higher AUROC) at deeper layers before slightly degrading449

toward the final layers.450

This trend is consistent in LLaMA3 (Figure 4), Cohere (Figure 5), Mistral (Figure 6), Phi451

(Figure 8), Deepseek-Qwen-Distilled (Figure 8) but not in Qwen3 (Figure 9). These findings452

support our hypothesis that calibration benefits most from late-intermediate layers rather453

than the final decoder output.454
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Dataset Conf. Avg en fr ja th zh
ARC. ECE BRR ARC. ECE BRR ARC. ECE BRR ARC. ECE BRR ARC. ECE BRR ARC. ECE BRR

SciQ

Accuracy 34.34 34.34 34.34 60.60 60.60 60.60 41.93 41.93 41.93 19.78 19.78 19.78 23.10 23.10 23.10 26.27 26.27 26.27
Prob 71.00 24.46 28.14 69.29 8.49 21.57 75.70 20.72 25.98 66.87 27.20 27.44 82.70 35.47 34.16 60.46 30.41 31.56
True 48.90 29.60 28.92 46.68 25.16 34.85 53.23 23.91 26.96 40.75 38.12 28.09 53.70 31.29 28.73 50.16 29.54 25.97
Verb 57.45 35.25 49.28 55.82 24.05 32.54 61.23 36.89 44.27 58.70 38.54 56.52 52.43 38.98 58.02 59.08 37.81 55.07

common

Accuracy 43.74 43.74 43.74 78.32 78.32 78.32 53.23 53.23 53.23 18.01 18.01 18.01 41.35 41.35 41.35 27.80 27.80 27.80
Prob 66.05 24.73 28.86 70.78 8.03 15.58 63.90 13.46 25.48 62.44 33.78 30.35 72.36 34.75 36.08 60.79 33.62 36.81
True 47.04 32.03 35.74 52.95 34.79 41.75 50.73 26.60 30.31 40.51 36.08 38.85 51.27 25.14 30.30 39.75 37.55 37.50
Verb 63.28 33.04 39.97 61.41 14.12 18.31 56.04 28.56 37.97 69.16 41.79 48.83 58.37 41.27 47.72 71.41 39.45 47.01

triviaqa

Accuracy 21.42 21.42 21.42 43.01 43.01 43.01 28.78 28.78 28.78 9.35 9.35 9.35 11.79 11.79 11.79 14.15 14.15 14.15
Prob 81.01 29.73 25.07 85.11 21.57 22.05 80.54 20.36 23.01 82.68 33.41 21.93 85.93 33.59 26.97 70.77 39.74 31.40
True 48.46 33.93 28.24 47.27 27.49 30.80 51.86 29.71 27.00 45.91 38.45 23.00 48.45 38.79 36.06 48.81 35.22 24.34
Verb 63.74 40.79 48.32 71.67 32.54 33.68 66.35 35.29 43.16 61.58 45.51 52.28 56.29 45.51 57.85 62.80 45.12 54.64

Table 10: Experimental results of AUROC (ARC.), ECE and Brier on various datasets.
Inference & Confidence done on Tower-Babel/Babel-9B-Chat. Accracy is RPEM.

Language LLaMA3 Mistral Qwen
Prob ECE True ECE Verb ECE Acc. Prob ECE True ECE Verb ECE Acc. Prob ECE True ECE Verb ECE Acc.

Arabic 26.16 57.02 42.06 7.62 49.90 48.32 47.07 1.35 49.23 48.50 46.79 2.61
Danish 15.26 38.63 30.41 34.54 38.18 38.00 43.83 29.06 40.11 55.92 41.82 14.08
German 13.90 34.77 27.66 37.84 35.79 37.28 37.49 31.61 42.05 53.42 40.57 15.98
English 11.86 20.73 27.79 43.01 40.18 35.07 36.90 37.07 43.41 47.68 43.55 16.68
Spanish 11.88 32.76 24.06 35.99 36.74 39.74 39.81 28.51 44.81 51.55 44.15 14.38
Finnish 17.77 36.13 29.78 31.03 37.07 30.89 36.04 22.44 36.90 55.08 36.71 15.33
French 13.48 31.04 28.16 37.04 31.92 36.58 43.95 31.61 46.27 51.68 42.75 13.23
Hebrew 33.97 49.33 50.16 8.67 50.39 48.98 48.28 0.95 40.19 50.54 43.72 3.06
Hungarian 17.10 42.23 40.36 30.33 36.75 38.44 38.52 23.15 39.59 53.47 38.78 11.82
Italian 17.53 32.80 31.28 35.19 35.79 34.18 45.41 31.51 46.39 52.68 44.27 12.93
Japanese 36.25 50.18 46.27 8.27 41.12 48.42 52.17 3.01 51.18 56.16 46.22 3.51
Khmer 52.01 69.72 51.77 0.35 58.62 49.92 48.42 0.05 59.30 65.01 47.29 0.40
Korean 29.12 51.92 48.52 7.17 47.48 48.74 41.59 1.85 51.90 50.20 46.95 2.45
Malay 14.62 28.65 31.80 36.29 34.96 36.53 39.47 28.01 36.30 50.96 41.72 19.44
Dutch 14.47 25.64 39.04 36.19 33.66 29.97 37.83 32.41 42.20 53.21 41.81 15.58
Norwegian 16.83 30.69 40.82 32.78 34.91 38.65 40.26 27.91 38.11 54.58 38.98 15.33
Polish 16.27 28.45 29.68 35.14 36.04 35.17 46.81 31.56 38.50 57.20 39.78 17.13
Portuguese 14.46 30.12 31.57 34.94 37.77 35.38 37.72 29.81 49.98 49.46 41.57 14.68
Russian 20.86 45.11 37.98 17.34 37.23 43.95 39.70 16.28 47.02 54.67 44.67 7.21
Swedish 14.93 30.79 39.36 31.83 37.09 33.42 38.03 29.01 38.14 51.20 44.04 13.98
Thai 45.94 63.49 49.56 4.91 41.97 47.64 53.47 1.55 54.93 46.70 47.39 2.45
Turkish 16.49 36.48 31.90 33.13 39.85 39.76 36.56 17.99 39.06 61.84 42.79 13.03
Vietnamese 15.01 29.73 33.08 35.34 39.53 37.53 48.19 17.69 42.81 51.95 42.84 12.17
Chinese (CN) 34.87 59.53 44.98 4.41 32.43 47.76 49.48 3.06 51.47 59.82 44.51 6.51
Chinese (HK) 36.24 57.55 43.36 5.96 43.87 49.37 43.69 2.20 49.18 56.02 45.95 4.46
Chinese (TW) 40.14 55.68 45.54 3.51 39.31 48.83 51.88 2.25 50.20 56.64 44.35 5.46

Average 22.98 41.12 37.57 24.19 39.56 40.71 43.18 18.53 44.97 53.70 43.23 10.53

Table 11: Expected Calibration Error (ECE) and Accuracy results across LLaMA3, Mistral,
and Qwen on the MKQA dataset.

Figure 3: ECE vs. Entropy across layers in LLaMA3 on the MMMLU English subset.
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Figure 4: Calibration metrics (ECE, Brier score, AUROC) vs. entropy across layers on the
MMMLU subset for LLaMA3.
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Figure 5: Calibration metrics (ECE, Brier score, AUROC) vs. entropy across layers on the
MMMLU dataset for Cohere.
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Figure 6: Calibration metrics (ECE, Brier score, AUROC) vs. entropy across layers on the
MMMLU dataset for Mistral.
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Figure 7: Calibration metrics (ECE, Brier score, AUROC) vs. entropy across layers on the
MMMLU dataset for Phi.
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Figure 8: Calibration metrics (ECE, Brier score, AUROC) vs. entropy across layers on the
MMMLU dataset for Deepseek-qwen-distilled.
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Figure 9: Calibration metrics (ECE, Brier score, AUROC) vs. entropy across layers on the
MMMLU dataset for Qwen3.
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