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Abstract

Confidence calibration, the alignment between a model’s predicted con-
fidence and its empirical correctness, is crucial for the trustworthiness of
Large Language Models (LLMs), yet remains underexplored in multilin-
gual contexts. In this work, we present the first systematic evaluation of
multilingual calibration on human-translated benchmarks. Our analysis re-
veals that LLMs exhibit significant disparities across languages, particularly
underperforming in low-resource and non-Latin-script settings. To under-
stand the source of this miscalibration, we conducted a layer-wise analysis
and uncovered a consistent pattern: intermediate layers often yield better-
calibrated outputs than final layers, especially for low-resource languages.
Motivated by this finding, we introduce a suite of novel calibration methods
that leverage these intermediate representations, including ensemble strate-
gies and contrastive decoding. Our methods substantially improve ECE,
Brier Score, and AUROC, outperforming the final-layer baseline by wide
margins. These findings challenge the conventional reliance on final-layer
decoding and suggest a new direction for achieving robust and equitable
multilingual calibration.

1 Introduction

Calibration in machine learning refers to the alignment between a model’s confidence in its
predictions and the actual probability of those predictions being correct (Guo et al., 2017;
Tian et al., 2023; Geng et al., 2024). For example, a perfectly calibrated model that assigns
an 80% confidence to a prediction should indeed be correct approximately 80% of the time.
Accurate calibration is crucial in practical applications of large language models (LLMs),
particularly in high-stakes scenarios such as medical diagnosis, legal advice, or critical
decision-making processes (Zhang et al., 2024a;b; Yang et al., 2024b). Properly calibrated
models can provide more reliable and interpretable confidence scores, increasing their
trustworthiness and clearly indicating the reliability of generated responses.

However, existing research on calibration has primarily focused on English-language set-
tings (Tian et al., 2023; Li et al., 2024; Zhang et al., 2024b), or relied on machine-translated
datasets (Xue et al., 2024). Model calibration in more realistic multilingual scenarios, and the
effectiveness of calibration methods in such environments, remain largely underexplored.
This gap is especially concerning for low-resource languages, where limited training data
often results in poorer calibration, increasing the risk of misleading or harmful outputs in
critical applications. Therefore, in this paper, we systematically investigate multilingual
calibration by addressing the following research questions: RQ1: Do existing multilingual
models exhibit different calibration performance in different languages? RQ2: What are the
reasons of certain languages show worse calibration in transformer-based models? RQ3:
Can we develop methods to achieve more robust and consistent confidence estimation
across languages?

We first empirically analyze popular LLMs (Llama, Qwen, Mistral, Babel) calibration status
using human-translated datasets MMMLU and MKQA, covering both multiple choice and
short-form QA in Section 3. We demonstrate that Low-Resource Languages are with lower
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Figure 1: An LLM’s layer-wise outputs for a question in Chinese. An intermediate layer
(26th) correctly identifies the answer (B), while the final layer (32nd) becomes confidently
wrong (A). This motivates our study of layer-wise calibration.

accuracy and lower calibration. Meanwhile, we point out that Latin languages show better
calibration and accuracy compared with non-Latin languages.

Inspired by recent insights into layer-wise multilingual representations, we examine the
calibration status for different layers to explore the reason behind last layer uncalibration.
Recent study suggests that intermediate layers in LLMs encode cross-lingual semantic
knowledge in a language-agnostic manner, whereas upper layers are typically language-
specific (Bandarkar et al., 2024; Wendler et al., 2024). Leveraging this observation, in
Section 4, we show that different layers within multilingual models exhibit varying calibration
quality across languages. For low-resource languages, LLMs show better calibration results in
intermediate layers, and dramatically turn bad in last layer.

Our finding inspired us to use intermediate layer representations to enhance calibration in
multilingual LLMs, aiming to mitigate calibration disparities between high-resource and
low-resource languages. In Section 5, we propose a series of novel calibration methods
that leverage the intermediate layers to boost final calibration results. Our results demon-
strate significant improvements in calibration performance, particularly for low-resource
languages. This study provides valuable insights and methodological contributions to-
wards achieving reliable multilingual calibration, paving the way for more equitable and
trustworthy deployment of LLMs globally. Our contributions are listed as follows:

* We provide a comprehensive empirical analysis of calibration in multilingual
LLMs on human-translated datasets, revealing significant disparities between high-
resource and low-resource languages.

* We are the first to investigate layer-wise calibration, showing that intermediate
layers often exhibit better calibration for low-resource languages compared to the
final layer.

* We propose novel calibration methods that leverage intermediate layer represen-
tations, demonstrating their effectiveness in improving calibration and reducing
performance gaps across languages.

2 Related Work

Multilingual Calibration Recent work has highlighted that modern LLMs, despite their
strong performance, often generate overconfident predictions (Xiong et al., 2024; Zhang
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et al.,, 2024a). Calibration techniques are thus in need to mitigate the overconfidence issue
Geng et al. (2023), but it is underexplored in multilingual setting. Seminal work by Ahuja
et al. (2022) first established that massively multilingual models like mBERT and XLM-
R are poorly calibrated, especially for low-resource and typologically distant languages.
Subsequent research has confirmed that this problem persists and may even be ampli-
fied in modern generative models. For instance, Yang et al. (2023) specifically evaluated
multilingual question-answering LLMs and found substantial calibration gaps between
high-resource and low-resource languages. Expanding this line of research, Xue et al. (2024)
conducted a comprehensive study across various models, covering both language-agnostic
and language-specific tasks. However, all datasets in their study were translated by machine,
which can potentially import bias. These studies collectively establish a critical performance
bottleneck: even when models achieve reasonable accuracy, their reliability is undermined
by poor multilingual calibration. However, they primarily focus on documenting this phe-
nomenon at the final output layer. The architectural origins of this cross-lingual calibration
deficit remain underexplored, motivating our work to investigate calibration dynamics
within the internal layers of the model.

Layer-wise Representations A growing body of research investigates the functional spe-
cialization of layers within multilingual transformers. It is widely observed that intermediate
layers encode cross-lingual semantic knowledge in a largely language-agnostic manner,
forming a shared representational space (Bandarkar et al., 2024). In contrast, the final
layers tend to be more language-specific, adapting these general representations to handle
surface-level features like syntax and word order for the target language. Recent studies on
predominantly English-trained LLMs, such as LLaMA, suggest a more specific mechanism:
these models often process multilingual text by mapping it to an internal English-based
representation in the middle layers, before translating it back to the target language in the
final layers (Wendler et al., 2024; Kojima et al., 2024; Alabi et al., 2024). This ”latent English”
hypothesis explains the empirical success of prompting strategies that explicitly ask the
model to “think in English” before generating a response in another language, as this aligns
with the model’s internal processing pathway (Shi et al., 2022; Zhang et al., 2024c). Our
work builds on these insights by exploring the implications of this layer-wise specialization
for model calibration.

3 Benchmarking Multilingual Calibration on Human-Translated
Datasets

3.1 Experiment Setup

Datasets and Models Previous work has mainly used machine-translated question-
answering pairs (Xue et al., 2024), which may introduce potential biases. We therefore
use human-translated datasets with both multiple-choice and short-form question answer-
ing: (1) MMMLU (Hendrycks et al., 2020) and (2) MKQA (Longpre et al., 2021). For our
experiments, we evaluate a suite of recent large language models: Llama3-8B (Grattafiori
et al., 2024), Mistral-7B (Jiang et al., 2023), Qwen2-7B (Yang et al., 2024a), and Babel (Zhao
et al., 2025).

Confidence Elicitation Methods and Metrics For the MMMLU dataset, which consists of
multiple-choice questions, we use the log probability of the chosen answer as the model’s
confidence. For the MKQA dataset, which contains short-form answers, we explore three
different confidence elicitation methods: (1) the log probability of the generated sequence
(log prob), (2) the probability of the model generating a "true” token after being presented
with the question and its answer (ptrue), and (3) verbalized confidence where the model
explicitly states its confidence level. To evaluate calibration and accuracy, we use four pri-
mary metrics: Area Under the Receiver Operating Characteristic Curve (AUROC), Expected
Calibration Error (ECE), the Brier Score, and overall Accuracy.
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Language | AUROC ECE BRIER Accuracy
Arabic 61.00 33.06  24.37 38.20
Bengali 58.44 2493 2339 35.20
German 65.36 2581 2492 44.40
English 80.36 461  17.63 61.20
Spanish 71.65 1821  21.89 52.00
French 71.39 13.87 2275 51.30
Hindi 62.07 2831  24.28 39.90
Indonesian 66.25 19.67  23.76 45.00
Italian 71.57 2119 2274 51.80
Japanese 61.73 2836 27.27 43.00
Korean 62.59 30.86  25.06 42.50
Portuguese 71.37 1051 21.76 50.40
Swahili 61.10 23.84 2145 32.20
Yoruba 58.00 818 1943 27.40
Chinese 50.63 4194  19.56 23.10
Avg. Low-Resource 61.14 23.00 2278 36.32
Avg. High-Resource 67.41 21.71  22.62 46.63
Avg. Latin-Script 71.14 16.27 2221 50.87
Avg. Non-Latin-Script 59.44 2744  23.10 35.19

Average (All Languages) | 64.90 2222 2268 42.51

Table 1: Performance comparison across languages for AUROC, ECE, BRIER score, and
Accuracy in LLaMA3, evaluated on the MMMLU dataset.

3.2 Results

Our evaluation, summarized in Table 1 for the LLaMA3 model on the MMMLU dataset,
reveals notable performance disparities across various languages. We observe consistent
patterns for Mistral 7B (Table 4), Qwen 2 7B (Table 6), and Babel (Table 5), which are provided
in the Appendix.

LLM Calibration is Lacking in Low-Resource Languages As shown in Table 1, there is
a clear trend of poorer calibration for low-resource languages. The average ECE for low-
resource languages is 23.00%, which is substantially higher than the 4.61% ECE for English,
indicating that the model’s confidence scores in these languages are less aligned with the
actual likelihood of correctness. Similarly, the average Brier score for low-resource languages
is 22.78, again higher than that for high-resource languages. For instance, languages such
as Arabic, Hindi, and Korean exhibit high ECE values of 33.06%, 28.31%, and 30.86%,
respectively, underscoring this calibration challenge.

Low-resource languages show lower accuracy. A direct correlation between the resource
level of a language and the model’s accuracy is also evident. The average accuracy for
low-resource languages is a mere 36.32%, starkly contrasting with the 61.20% accuracy
achieved in English and the 46.63% average for high-resource languages. Languages like
Swahili, Yoruba, and Chinese show particularly low accuracy scores of 32.20%, 27.40%, and
23.10%, respectively. This suggests that the model’s reasoning and knowledge retrieval
capabilities are significantly weaker in these languages.

Latin languages show better calibration and accuracy compared with non-Latin languages.
Our results also highlight a performance gap between languages based on their script. Latin-
script languages achieve an average accuracy of 50.87% and an average ECE of 16.27%. In
contrast, non-Latin-script languages have a significantly lower average accuracy of 35.19%
and a much higher average ECE of 27.44%, indicating poorer calibration. This disparity is
consistent across all metrics, with Latin-script languages showing a higher average AUROC
(71.14% vs. 59.44%) and a slightly lower (better) Brier score (22.21% vs. 23.10%). This
suggests that the predominantly Latin-character-based pre-training of many foundational
models may disadvantage languages with different writing systems.
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Figure 2: ECE vs. entropy across layers on the MMMLU subset for LLaMA3. In the
multilingual setting, many languages achieve their lowest (best) ECE in intermediate layers
(e.g., 22-26), after which calibration quality degrades towards the final layer. This contrasts
with the English-only setting, where calibration improves monotonically (see Figure 3).

4 Mid-Layers Reveal Better Calibration

To understand the source of the poor calibration observed in the final layer, especially for
low-resource languages, we investigate how calibration evolves throughout the model’s
depth. We hypothesize that the final layers, which may over-specialize in high-resource
languages like English, could be detrimental to the calibration of other languages.

41 Methodology for Layer-Wise Early Decoding

To investigate how calibration evolves across the depth of the model, we adopt a layer-wise
probing technique inspired by the early exiting paradigm (Elbayad et al., 2020). Instead of
applying the modeling head only to the final hidden state, we attach it to each intermediate
transformer layer. This allows us to extract logits and compute prediction confidence from
every layer, providing a granular view of the model’s decision-making process.

Formally, let h; € R? denote the hidden representation at layer ¢, where £ = 1,...,L, and d
is the dimensionality of the hidden state. We apply the original language modeling head,

with weight matrix W € RV, to compute the logits at each layer:
Zy = Whg

where z, € RY are the unnormalized token logits over the vocabulary of size V. These logits
are then converted into probabilities using the softmax function, from which we derive the
predicted token and its confidence at each layer:

p¢ = softmax(zy), 1§, = argmax[py]v
v

To quantify the model’s uncertainty at each stage, we also compute the entropy of the
probability distribution for each layer:

14
He=—) [pdolog,[plo

v=1
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4.2 Multilingual Language Models Calibrate Earlier

Calibration improves as expected in English-only settings. We first establish a baseline
by conducting a layer-wise analysis in an English-only setting. As shown in Figure 3 for
Llama 3, we observe a clear and expected trend: calibration improves monotonically with
layer depth. ECE is high in the early layers and steadily decreases, reaching its minimum
at the final layer. This aligns with the conventional understanding that representations
become progressively more refined and task-specific, leading to greater confidence and
better calibration as data propagates through the network.

Multilingual settings reveal a surprising calibration peak in middle layers. However,
our analysis reveals a strikingly different pattern in the multilingual context. As illustrated
in Figure 2, the best calibration performance for many languages does not occur at the
final layer. Instead, we find that ECE often reaches its minimum in the late-intermediate
layers (typically between layers 22 and 26 for a 32-layer model), after which calibration
quality worsens as the signal proceeds to the final output layer.

Final-layer specialization may degrade multilingual calibration. This phenomenon is
particularly pronounced for low- and mid-resource languages. It suggests that while
intermediate layers may capture a well-calibrated, language-agnostic representation, the
final layers might be overfitting to the patterns of dominant languages (i.e., English) or
introducing noise during the final language-specific adaptation phase. This could harm
calibration for less-represented languages, whose representations might be distorted by this
final step.

The mid-layer calibration peak is a robust finding across models. This critical observation
is not isolated to a single model or metric. We consistently find this pattern across multiple
architectures and evaluation metrics, as detailed in the Appendix. For models like LLaMA3
(Figure 4), Cohere (Figure 5), Mistral (Figure 6), and others, calibration (measured by ECE,
Brier score, and AUROC) improves through the deep layers, hits an optimal point in the
middle, and then deteriorates. This core finding motivates the novel calibration methods
proposed in the next section, which aim to leverage these better-calibrated intermediate
representations.

5 Improving Low-Resource Calibration

Building on our observations from the previous section, we find that calibration performance
often peaks at intermediate layers, particularly for low-resource languages. This suggests a
promising direction: rather than relying solely on the final layer, we can develop calibration
methods that explicitly leverage the strengths of intermediate representations. Below, we
outline several such methods and their variations, each designed to enhance calibration in
multilingual settings by taking advantage of these findings.

5.1 Layer-wise Calibration Methods

Method 1: Best Layer

From our empirical analysis (Figure 2), we identify that the model achieves optimal cali-
bration at certain intermediate layers. We define the “best” layer as the one that minimizes
ECE on a held-out validation set. Formally, let ECE, denote the ECE computed from the
output probabilities at layer /. The best-performing layer ¢* is then selected as:

¢* =arg min ECE
gfe{l,l...,L} ¢

We then use the output probabilities from layer £* for downstream prediction and calibration-
sensitive decision making. This approach is both simple and effective, requiring no addi-
tional parameters or training while leveraging empirical calibration dynamics.
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Method 2: Best+Last Ensemble

To leverage complementary strengths of both intermediate and final layers, we propose a
method that ensembles outputs from the best-calibrated layer ¢* and the final layer L. We
explore two strategies:

(1) Probability Averaging: Compute the average of the softmax probabilities from both
layers:

1
Pensemble = 5 (softmax(Why-) + softmax(Why))

(2) Hidden State Averaging: Compute the average of the hidden states before applying the
output head and softmax:

1
Pensemble = softmax <W : E(hé* + hL))

This method allows the model to combine calibration-aware signals from intermediate
layers with the semantic richness of the final layer, often resulting in improved overall
calibration.

Method 3: Good Layers Pooling
Rather than selecting a single intermediate layer, we identify a set of layers that are better
calibrated than the final layer and treat them collectively as “good” layers. Specifically, we
define the set of good layers G as:

G = {¢:ECE;, < ECE_}
We then explore two ensembling strategies, same as method 2:

(1) Probability Averaging:

Y veg softmax(Why) + softmax(Why)

Pensemble = |g| T
(2) Hidden State Averaging;:
Z, hé + hL
Pensemble = softmax (W : %

This approach integrates broader calibration-aware signals from multiple intermediate
layers, potentially smoothing out noise from any individual layer and capturing more
robust confidence estimates.

Method 4: Contrastive Layer Decoding

Inspired by contrastive decoding methods (e.g., Li et al. (2023)), we propose to enhance
calibration by contrasting the final layer with the best-calibrated intermediate layer. The intu-
ition is to use the calibrated intermediate signal to guide and correct the often overconfident
final prediction.

Let py« and p; denote the softmax probability distributions from the best and final layers,
respectively. We compute the contrastive log-probability vector as:

Pcontrast = softmax (log | A 10% PL)
where « is a tunable contrastive strength parameter.

Method 5: Hidden State Steering

To improve calibration without modifying the model head, we steer the final hidden state
toward the better-calibrated intermediate representation. Let h; and hy- be the hidden states
from the final and best layers, respectively. We compute a steering vector A, = hy» —hy
and apply it with a tunable weight :

Psteered = softmax (W(hL + IB ’ Ah))

This method gently shifts the final representation in the direction of the calibrated interme-
diate signal, improving output confidence without disrupting task semantics.
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Method | ECE| BrierScore | AUROC 1
BEST LAYER (29) 13.51 21.92 73.01
BEST+LAST ENSEMBLE (PROB AVG) 12.26 20.32 72.76
GOOD LAYERS ENSEMBLE (PROB AVG) 12.33 19.84 74.68
BEST+LAST ENSEMBLE (HIDDEN AVG) 9.95 20.28 74.36
GOOD LAYERS ENSEMBLE (HIDDEN AVG) | 10.03 19.96 75.55
CONTRASTIVE DECODING 14.97 22.55 72.76
HIDDEN STATE STEERING 17.11 24.05 73.90
CALIBRATION HEAD (TRAINED) 27.96 39.64 54.83
FINAL LAYER (32) \ 22.28 22.79 64.56

Table 2: Calibration performance of proposed methods on MMMLU using LLaMA3. Lower
is better for ECE and Brier; higher is better for AUROC. Best values in bold.

Method 6: Calibration Head Training
We propose training a lightweight MLP that operates directly on the best intermediate
representation to predict a small set of target classes. Given the hidden state hy- from the

best layer, we define a learnable projection head W,,; € RE*?, where C is the number of
task-specific classes (e.g., C = 4 for MMMLU). The calibrated prediction is computed as:

Peal = softmax(Wgyhys)

This calibration head is trained using a supervised loss (cross-entropy) on held-out data.

5.2 Calibration Results

Our proposed methods substantially outperform the final-layer baseline. As shown in
Table 2, our evaluation on the MMMULU dataset with LLaMA3 confirms the effectiveness
of our approach. This demonstrates a consistent advantage in moving beyond final-layer
outputs for calibration.

Aggregating signals from multiple well-calibrated layers yields the most robust results.
Among our methods, the Good Layers Ensemble (Hidden Avg) emerges as the top per-
former in overall metrics. It achieves the best AUROC (75.55) and Brier Score (19.96),
supporting our hypothesis that combining the representations from multiple high-quality
intermediate layers leads to more stable and reliable predictions.

A simpler ensemble of the best and final layers also offers strong performance. The
Best+Last Ensemble (Hidden Avg) also proves highly competitive, securing the lowest
ECE of just 9.95. This result is particularly compelling as it suggests that even a simple,
two-layer combination can dramatically improve calibration without introducing significant
complexity, making it a practical and effective solution.

Our findings confirm the value of leveraging intermediate representations. Ultimately,
the results validate our central thesis: using intermediate representations—whether through
direct selection, ensembling, or other decoding strategies—is a powerful technique for
enhancing multilingual calibration. By empirically identifying and utilizing the better-
calibrated parts of the model, we can mitigate the issues observed at the final layer.

5.3 Intermediate Representations Also Improve Accuracy

We find that better calibration can also lead to improved task accuracy. Beyond improv-
ing calibration, we investigated whether these intermediate representations could enhance
task performance itself. To test this, we replaced the final-layer hidden state with the states
derived from our top-performing methods (Best Layer, Best+Last Ensemble, and Good
Layers Ensemble) and used them for final prediction without any re-training.
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Language True Acc. (%)  Best Layer (%)  Best+Last (%)  Good Layers (%)

Arabic 38.2 38.9 404 40.9
Bengali 35.3 34.6 355 374
German 44.6 47.7 49.1 51.0
English 60.8 60.3 61.1 61.3
Spanish 52.2 52.9 53.1 53.4
French 51.5 52.6 53.2 52.7
Hindi 39.0 39.6 411 41.6
Indonesian 45.1 46.2 46.5 46.7
Italian 51.9 54.8 54.4 55.0
Japanese 44.0 49.2 50.4 50.8
Korean 42.4 454 46.3 471
Portuguese 50.3 51.3 51.1 51.3
Swahili 32.3 379 37.6 37.6
Yoruba 27.0 29.4 29.8 29.9
Chinese 23.1 47.8 48.2 499
Average 42.51 45.91 46.52 47.11

Table 3: True accuracy vs. predicted accuracy across languages and calibration strategies on
MMMLU (LLaMA3). Predictions are based the top-1 probabilities from each method.

The ensembling methods provide consistent accuracy gains across languages. The
results, presented in Table 3, are striking. These alternative representations lead to consistent
accuracy improvements across nearly every language. The GOOD LAYERS ENSEMBLE is
again a standout, boosting the average accuracy to 47.11%—a 4.6% absolute improvement
over the final-layer baseline (42.51%). This demonstrates that the benefits of our methods
are not confined to calibration alone.

Improved accuracy likely stems from more robust and less noisy representations. This
finding is particularly noteworthy because the hidden states were optimized purely for
calibration, not accuracy. We hypothesize this dual benefit arises because: (1) intermediate
representations retain richer multilingual signals before final-layer overspecialization, (2)
ensembling averages out layer-specific noise, leading to more stable predictions, and (3)
better-calibrated representations are inherently more discriminative, which directly aids
task performance. This suggests that pursuing better calibration can be a pathway to more
accurate and reliable multilingual models overall.

6 Conclusion

We present the first systematic evaluation of multilingual calibration on human-translated
benchmarks, confirming that large language models are poorly calibrated, particularly for
low-resource and non-Latin-script languages. Our key finding is that calibration quality
does not monotonically improve with model depth; instead, for many languages, it peaks at
intermediate layers before degrading at the final output. Motivated by this discovery, we
propose a suite of novel methods that leverage these more reliable intermediate representa-
tions, including layer ensembling and contrastive decoding. Our experiments demonstrate
that these approaches not only substantially improve calibration metrics such as ECE and
Brier score but also yield significant gains in task accuracy across languages. This research
challenges the conventional wisdom of relying solely on the final layer for multilingual
generation and suggests a new direction for building more robust and equitable models by
harnessing the well-calibrated knowledge within the network’s intermediate layers.
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27 A Full Results

4

N

s A1 LLMs Are Not Calibrated in Low-Resource Languages

429 ¢ Dataset 1: MMMLU (Hendrycks et al., 2020)

430 — Table 1: LLaMA3 calibration metrics across languages

431 — Table 4: Mistral calibration metrics across languages

432 — Table 5: Babel calibration metrics across languages

433 — Table 6: Qwen calibration metrics across languages
Language | AUROC ECE BRIER Accuracy
Bengali 64.56 49.70  11.72 0.10
German 70.84 2414  29.32 43.00
Spanish 71.33 21.64 26.79 42.90
French 71.25 2220  28.36 46.40
Hindi 75.08 39.77 6.23 1.60
Indonesian 69.48 2698  29.69 38.80
Italian 74.08 2524 2825 44.50
Japanese 56.09 4415 1548 6.50
Korean 39.78 46.62  16.25 5.50
Portuguese 71.11 29.25  27.59 47.10
Swahili 56.02 30.81 27.34 26.30
Yoruba 44.79 4418  21.99 16.10
Chinese 62.12 33.55  24.58 16.70
Avg. Low-Resource 61.99 3829  19.39 16.58
Avg. High-Resource 64.58 30.85  24.58 31.58
Avg. Latin-Script 71.35 2491 2833 43.78
Avg. Non-Latin-Script 56.92 41.25  17.66 10.40

Average (All Languages) |  63.61 33.74  22.56 25.76

Table 4: Performance comparison across languages for AUROC, ECE, BRIER score, and
Accuracy using Mistral on the MMMLU dataset.

Language | AUROC ECE BRIER Accuracy
Arabic 72.52 512 21.32 51.70
Bengali 69.42 14.08  19.35 31.00
German 75.66 822  19.85 57.00
Spanish 78.22 6.65  18.94 59.10
French 74.35 723 20.04 59.60
Hindi 64.91 16.07  22.01 37.20
Indonesian 79.00 522 18.64 56.80
Italian 77.86 474 1892 59.50
Japanese 67.60 3798 1596 19.20
Korean 60.43 3534 20.31 26.10
Portuguese 75.60 9.09 2011 57.40
Swahili 66.53 6.04 21.65 38.80
Yoruba 18.59 50.08  25.27 5.50
Chinese 70.67 16.63  18.67 24.20
Avg. Low-Resource 61.83 16.10  21.37 36.83
Avg. High-Resource 72.55 1574  19.10 45.26
Avg. Latin-Script 76.78 6.86  19.42 58.23
Avg. Non-Latin-Script 61.33 22.67  20.57 29.21

Average (All Languages) |  67.99 15.77  20.08 41.81

Table 5: Performance comparison across languages for AUROC, ECE, BRIER score, and
Accuracy using Babel on the MMMLU dataset.
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Language | AUROC ECE BRIER Accuracy
Arabic 67.15 1430  26.67 54.90
Bengali 64.10 26.68  31.98 33.20
German 76.94 21.59  25.08 55.60
Spanish 76.95 19.26 2398 61.10
French 75.65 1692  22.88 62.20
Hindi 72.01 28.73  28.86 33.90
Indonesian 75.69 15.83  23.53 54.30
Italian 75.32 21.07  24.46 58.70
Japanese 80.03 6.71  17.10 33.10
Korean 74.15 17.60  25.75 52.20
Portuguese 75.85 18.86  23.61 58.40
Swahili 59.93 30.12  33.09 32.30
Yoruba 23.49 46.99  36.11 2.00
Chinese 85.31 1247 1742 47.00
Avg. Low-Resource 60.40 2711  30.04 35.10
Avg. High-Resource 77.53 16.81 2254 53.54
Avg. Latin-Script 76.07 1892 23.92 58.38
Avg. Non-Latin-Script 65.77 2295 2712 36.08
Average (All Languages) | 70.13 21.27  25.79 45.67

Table 6: Performance comparison across languages for AUROC, ECE, BRIER score, and
Accuracy using Qwen on the MMMLU dataset.

Avg en fr ja th zh |

ARC. ECE BRR | ARC. ECE BRR | ARC. ECE BRR | ARC. ECE BRR | ARC. ECE BRR | ARC. ECE BRR
Accuracy | 30.07 30.07 30.07 | 60.13 60.13 60.13 | 41.14 41.14 41.14 | 1456 1456 14.56 | 11.87 1187 11.87 | 22.63 22.63 22.63
SciQ Prob 7301 24.83 2546 | 71.73 690 2074 | 7405 1572 2380 | 7519 31.60 2579 | 7489 3852 29.19 | 69.17 3143 27.77
True 71.67 43.62 3920 | 69.66 2129 27.00 | 67.76 40.54 39.31 | 76.37 5043 4273 | 68.80 57.73 4545 | 7576 4811 41.49

Verb 62.68 31.51 4044 | 67.02 21.60 2951 | 60.63 25.03 3294 | 6737 3854 5189 | 6523 40.27 5031 | 53.17 3212 37.56
Accuracy | 3528 3528 3528 | 7535 7535 7535 | 46.68 46.68 46.68 | 1512 1512 15.12 | 1731 1731 1731 | 21.94 21.94 2194
Prob 70.60 28.07 2571 | 79.69 1823 1635 | 6751 1617 25.01 | 64.84 3505 26.87 | 7532 37.74 2719 | 65.66 33.17 33.11
True 6481 33.07 3333 | 6349 498 1794 | 64.89 2744 3079 | 7099 5048 4130 | 56.31 38.69 3874 | 6835 43.77 37.87
Verb 6297 31.37 3851 | 6145 2611 1958 | 57.71 24.00 35.80 | 6859 37.11 5208 | 7199 37.16 44.10 | 55.09 3248 40.99
Accuracy | 31.02 31.02 31.02 | 66.18 66.18 66.18 | 48.94 4894 4894 | 15.61 1561 15.61 | 10.65 10.65 10.65 | 13.74 13.74 13.74
Prob 8273 24.08 2127 | 8048 10.82 1727 | 7791 1564 2185 | 8745 2370 18.09 | 8857 3423 21.14 | 7922 36.02 28.01

Dataset Conf.

common

tiviadd |\ pe | 7460 4227 3674 | 7460 2605 2152 | 7023 3264 3235 | 7292 5091 4288 | 7493 5382 4390 | 8078 4792 43.06

Verb 7116 3387 41.05 | 7894 21.18 2347 | 70.05 30.50 32.78 | 69.39 34.05 50.25 | 73.09 40.08 55.85 | 64.31 4356 42.92

Table 7: Experimental results of AUROC (ARC.), ECE and Brier on various datasets. meta-
llama/Llama-3.1-8B-Instruct Accracy is RPEM.

434 ¢ Dataset 2: SciQ, Common, TriviaQA (Xue et al., 2024)

435 — Table 7: LLaMA3 PREM results in SciQ, Common, TriviaQA

436 — Table 8: Mistral PREM results in SciQQ, Common, TriviaQA

437 — Table 9: Qwen PREM results in SciQ, Common, TriviaQA

438 — Table 10: Babel PREM results in SciQQ, Common, TriviaQA

439 * Dataset 3: MKQA (Longpre et al., 2021)

440 — Table 11: MKQA results with ECE metrics with three models: LLaMA3, Mistral
441 and Qwen
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D Avg en fr ja th zh |
ataset | Conf | \pc. ECE BRR | ARC. ECE BRR | ARC. ECE BRR | ARC. ECE BRR | ARC. ECE BRR | ARC. ECE BRR
Accuracy | 2769 2769 2769 | 5728 5728 578 | 37.66 37.66 37.66 | 1646 1646 1646 | 269 269 269 | 2437 2437 2437
SciQ Prob | 7310 3503 29.86 | 7615 2651 24.86 | 69.93 29.62 3142 | 77.09 37.33 2948 | 6607 4793 3331 | 7626 3376 30.22
True | 6443 3993 4330 | 6448 3562 3642 | 6684 3081 4555 | 64.16 4374 49.68 | 6440 53.13 3332 | 6229 3635 51.52
Verb | 6441 4054 4377 | 6227 39.66 3607 | 67.27 3005 4474 | 6415 43.67 5336 | 63.18 4555 3486 | 65.19 4377 49.80
Accuracy | 4874 4874 4874 | 7413 7413 7413 | 49.83 49.83 4983 | 4038 4038 4038 | 30.68 3068 3068 | 4869 4869 48.69
common | Prob | 5929 3363 3729 | 6150 10.87 1924 | 6186 2456 2910 | 5850 4155 4535 | 5582 5190 5455 | 5877 3926 3821
True | 5661 27.87 4024 | 5574 2329 2339 | 5633 2654 4131 | 5547 30.69 4842 | 5862 3096 4459 | 5691 27.86 43.51
Verb | 5332 2974 4328 | 5073 27.62 2455 | 5625 2408 4267 | 51.92 3758 5122 | 5394 30.09 5341 | 53.77 2931 4455
Accuracy | 2779 2779 2779 | 6837 6837 6837 | 4569 4569 4569 | 10.16 1016 10.16 | 423 423 423 | 1049 1049 1049
triviaga | Prob | 8137 3068 2339 | 7467 1556 2008 | 7376 2822 2645 | 8630 3392 2514 | 8416 4071 2212 | 87.95 3499 2314
q True | 6813 36.15 4007 | 7048 1658 21.69 | 7048 2922 3359 | 6661 43.65 4956 | 65.03 4552 3695 | 68.07 4580 5858
Verb | 6682 43.66 4539 | 7204 3088 2379 | 69.83 4353 3683 | 6296 4459 5721 | 5976 49.28 5041 | 6949 5004 5871

Table 8: Experimental results of AUROC (ARC.), ECE and brier on various datasets. Infer-
ence & Confidence done on mistralai/Mistral-7B-Instruct-v0.3. Accracy is RPEM.

Dataset Cont. Avg en fr ja th zh |
i ARC. ECE BRR | ARC. ECE BRR | ARC. ECE BRR | ARC. ECE BRR | ARC. ECE BRR | ARC. ECE BRR
Accuracy | 39.69 39.69 39.69 | 6282 62.82 62.82 | 43.83 4383 4383 | 27.69 27.69 27.69 | 23.58 2358 2358 | 40.51 40.51 40.51
SciQ Prob 63.63 29.15 3086 | 61.67 18.50 23.92 | 7023 29.33 3211 | 60.72 32.87 30.71 | 67.09 37.38 3477 | 5845 27.66 3277
True 46.81 3437 5024 | 51.69 2870 34.67 | 53.32 3519 50.81 | 46.89 3936 61.41 | 3535 37.08 53.83 | 46.82 3150 50.50
Verb 6432 32.89 37.63 | 6029 2621 29.01 | 6449 3815 37.96 | 69.09 36.87 3871 | 6496 3529 4241 | 6276 27.93 40.08
Accuracy | 5809 58.09 58.09 | 80.86 80.86 80.86 | 61.89 61.89 61.89 | 4388 43.88 43.88 | 50.17 50.17 50.17 | 53.67 53.67 53.67
Prob 6351 2833 29.88 | 75.66 23.28 14.28 | 59.12 2871 29.88 | 60.09 2775 34.86 | 6551 38.67 3815 | 57.18 2326 32.21
True 56.10 2528 3850 | 60.31 13.82 17.68 | 5647 2417 3517 | 5590 3597 51.30 | 51.31 2647 4534 | 56.50 2599 42.99
Verb 6279 18.70 2821 | 7127 1453 13.67 | 58.61 2299 2797 | 6269 21.22 3498 | 60.13 19.02 3252 | 6126 1575 31.90
Accuracy | 2556 2556 2556 | 4593 4593 4593 | 30.08 30.08 30.08 | 1545 1545 1545 | 1431 1431 1431 [ 2203 22.03 22.03
Prob 81.01 34.89 29.00 | 8551 37.26 2541 | 7859 31.37 2956 | 81.18 31.98 2673 | 8549 3490 2693 | 7430 3892 36.38
True 4271 4039 61.27 | 5844 3599 4994 | 48.62 3855 6548 | 34.81 4795 6856 | 3544 3548 5725 | 36.24 44.00 65.11
Verb 8139 33.78 2576 | 81.72 2558 20.63 | 8287 31.85 2397 | 8231 3854 2525 | 8126 38.79 2994 | 7879 3415 29.03

common

triviaqa

Table 9: Experimental results of AUROC (ARC.), ECE and Brier on various datasets. Infer-
ence & Confidence done on Qwen/Qwen2.5-7B-Instruct. Accracy is RPEM.

A.2 Layer-Wise Calibration Analysis

A.2.1 English Calibration improves as layer deepens

As shown in Figure 3, calibration in English steadily improves as the model progresses
through deeper layers, with lower ECE observed alongside increasing entropy.

A.2.2 Multilingual Calibration is Best at Late-Intermediate Layers

We visualize calibration performance across layers by plotting metrics against entropy on
the MMMLU dataset. Across all models, we observe that ECE, Brier score, and AUROC
improve (lower ECE/Brier, higher AUROC) at deeper layers before slightly degrading
toward the final layers.

This trend is consistent in LLaMA3 (Figure 4), Cohere (Figure 5), Mistral (Figure 6), Phi
(Figure 8), Deepseek-Qwen-Distilled (Figure 8) but not in Qwen3 (Figure 9). These findings
support our hypothesis that calibration benefits most from late-intermediate layers rather
than the final decoder output.
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Dataset Contf. Ave en fr ja th zh ‘
3 ARC. ECE BRR | ARC. ECE BRR | ARC. ECE BRR | ARC. ECE BRR | ARC. ECE BRR | ARC. ECE BRR
Accuracy | 3434 3434 3434 | 60.60 60.60 60.60 | 41.93 4193 4193 | 19.78 19.78 19.78 | 23.10 23.10 23.10 | 2627 2627 26.27
SciQ Prob 71.00 2446 28.14 | 69.29 849 2157 | 7570 20.72 2598 | 66.87 2720 2744 | 82.70 3547 34.16 | 6046 3041 31.56
True 4890 29.60 2892 | 46.68 25.16 34.85 | 53.23 2391 2696 | 40.75 3812 28.09 | 53.70 3129 2873 | 50.16 29.54 25.97
Verb 5745 3525 49.28 | 55.82 24.05 32.54 | 61.23 36.89 44.27 | 58.70 3854 56.52 | 5243 3898 58.02 | 59.08 37.81 55.07
Accuracy | 4374 4374 4374 | 7832 7832 7832 | 5323 5323 5323 | 1801 18.01 18.01 | 41.35 4135 41.35 | 2780 27.80 27.80
common Prob 66.05 2473 2886 | 7078 8.03 1558 | 63.90 13.46 2548 | 6244 33.78 3035 | 7236 34.75 36.08 | 60.79 33.62 36.81
True 47.04 3203 3574 | 5295 3479 41.75 | 5073 26.60 30.31 | 40.51 36.08 38.85 | 51.27 25.14 30.30 | 39.75 3755 37.50
Verb 63.28 33.04 3997 | 6141 1412 1831 | 56.04 2856 3797 | 69.16 41.79 48.83 | 58.37 4127 4772 | 7141 3945 47.01
Accuracy | 2142 2142 2142 | 4301 4301 43.01 | 28.78 2878 2878 | 9.35 9.35 935 | 11.79 11.79 1179 | 1415 1415 1415
triviaga Prob 81.01 29.73 25.07 | 85.11 21.57 2205 | 80.54 2036 23.01 | 8268 33.41 2193 | 8593 33.59 2697 | 70.77 39.74 3140
True 4846 3393 2824 | 4727 2749 30.80 | 51.86 29.71 27.00 | 4591 3845 23.00 | 4845 3879 36.06 | 48.81 3522 24.34
Verb 6374 40.79 4832 | 71.67 32.54 33.68 | 66.35 3529 43.16 | 61.58 4551 5228 | 56.29 4551 57.85 | 62.80 4512 54.64

Table 10: Experimental results of AUROC (ARC.), ECE and Brier on various datasets.
Inference & Confidence done on Tower-Babel/Babel-9B-Chat. Accracy is RPEM.

Language LLaMA3 Mistral Qwen

8uag Prob ECE  True ECE  Verb ECE  Acc. Prob ECE  True ECE Verb ECE  Acc. Prob ECE  True ECE  Verb ECE  Acc.
Arabic 26.16 57.02 42.06 7.62 49.90 48.32 47.07 1.35 49.23 48.50 46.79 2.61
Danish 15.26 38.63 30.41 34.54 38.18 38.00 43.83 29.06 40.11 55.92 41.82 14.08
German 13.90 34.77 27.66 37.84 35.79 37.28 37.49 31.61 42.05 53.42 40.57 15.98
English 11.86 20.73 27.79 43.01 40.18 35.07 36.90 37.07 43.41 47.68 43.55 16.68
Spanish 11.88 32.76 24.06 35.99 36.74 39.74 39.81 28.51 44.81 51.55 44.15 14.38
Finnish 17.77 36.13 29.78 31.03 37.07 30.89 36.04 2244 36.90 55.08 36.71 15.33
French 13.48 31.04 28.16 37.04 31.92 36.58 43.95 31.61 46.27 51.68 42.75 13.23
Hebrew 33.97 49.33 50.16 8.67 50.39 48.98 48.28 0.95 40.19 50.54 43.72 3.06
Hungarian 17.10 4223 40.36 30.33 36.75 38.44 38.52 23.15 39.59 53.47 38.78 11.82
Italian 17.53 32.80 31.28 35.19 35.79 34.18 45.41 31.51 46.39 52.68 44.27 12.93
Japanese 36.25 50.18 46.27 8.27 41.12 48.42 5217 3.01 51.18 56.16 46.22 3.51
Khmer 52.01 69.72 51.77 0.35 58.62 49.92 48.42 0.05 59.30 65.01 47.29 0.40
Korean 29.12 51.92 48.52 7.17 4748 48.74 41.59 1.85 51.90 50.20 46.95 2.45
Malay 14.62 28.65 31.80 36.29 34.96 36.53 39.47 28.01 36.30 50.96 41.72 19.44
Dutch 14.47 25.64 39.04 36.19 33.66 29.97 37.83 32.41 42.20 53.21 41.81 15.58
Norwegian 16.83 30.69 40.82 32.78 3491 38.65 40.26 2791 38.11 54.58 38.98 15.33
Polish 16.27 28.45 29.68 35.14 36.04 35.17 46.81 31.56 38.50 57.20 39.78 17.13
Portuguese 14.46 30.12 31.57 34.94 37.77 35.38 37.72 29.81 49.98 49.46 41.57 14.68
Russian 20.86 45.11 37.98 17.34 37.23 43.95 39.70 16.28 47.02 54.67 44.67 721
Swedish 14.93 30.79 39.36 31.83 37.09 33.42 38.03 29.01 38.14 51.20 44.04 13.98
Thai 45.94 63.49 49.56 491 41.97 47.64 53.47 1.55 54.93 46.70 47.39 2.45
Turkish 16.49 36.48 31.90 33.13 39.85 39.76 36.56 17.99 39.06 61.84 42.79 13.03
Vietnamese 15.01 29.73 33.08 35.34 39.53 37.53 48.19 17.69 42.81 51.95 42.84 12.17
Chinese (CN) 34.87 59.53 44.98 441 32.43 47.76 49.48 3.06 51.47 59.82 4451 6.51
Chinese (HK) 36.24 57.55 43.36 5.96 43.87 49.37 43.69 220 49.18 56.02 45.95 4.46
Chinese (TW) 40.14 55.68 45.54 3.51 39.31 48.83 51.88 2.25 50.20 56.64 44.35 5.46
Average ‘ 22.98 41.12 37.57 24.19 H 39.56 40.71 43.18 18.53 H 44.97 53.70 43.23 10.53

Table 11: Expected Calibration Error (ECE) and Accuracy results across LLaM A3, Mistral,
and Qwen on the MKQA dataset.
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Figure 3: ECE vs. Entropy across layers in LLaMA3 on the MMMLU English subset.
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Figure 4: Calibration metrics (ECE, Brier score, AUROC) vs. entropy across layers on the
MMMLU subset for LLaMA3.
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Figure 5: Calibration metrics (ECE, Brier score, AUROC) vs. entropy across layers on the
MMMLU dataset for Cohere.
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Figure 6: Calibration metrics (ECE, Brier score, AUROC) vs. entropy across layers on the
MMMLU dataset for Mistral.
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Figure 7: Calibration metrics (ECE, Brier score, AUROC) vs. entropy across layers on the
MMMLU dataset for Phi.
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Figure 8: Calibration metrics (ECE, Brier score, AUROC) vs. entropy across layers on the

MMMLU dataset for Deepseek-qwen-distilled.
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Figure 9: Calibration metrics (ECE, Brier score, AUROC) vs. entropy across layers on the
MMMLU dataset for Qwen3.
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