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Abstract

In this paper, we investigate how large language models (LLMS) process1

non-English tokens within their layer representations—an open question2

despite significant advancements in the field. Using representation steer-3

ing, specifically by adding a learned vector to a single model layer’s ac-4

tivations, we demonstrate that steering a single model layer can notably5

enhance performance. Our analysis shows that this approach achieves6

results comparable to translation baselines and surpasses state-of-the-art7

prompt optimization methods. Additionally, we highlight how advanced8

techniques like supervised fine-tuning (SFT) and reinforcement learning9

from human feedback (RLHF) improve multilingual capabilities by altering10

representation spaces. We further illustrate how these methods align with11

our approach to reshaping LLMS layer representations.12

1 Introduction13

In recent years, large language models (LLMs) have demonstrated remarkable capabilities14

across a wide range of tasks. However, the majority of these advancements have been15

concentrated in English, often neglecting other languages, particularly low-resource16

ones, due to the scarcity of available data. A common approach to addressing this gap is17

translating these languages into English before processing them. While this method can be18

effective, it is inherently limited by the quality and cost of translation Liu et al. (2024). To19

unlock the full potential of LLMs, integrating multilingual natively within these models is20

essential, ensuring robust performance across diverse languages without relying solely on21

translation.22

23

Recent studies have increasingly focused on enhancing the multilingual proficiency24

of LLMs. Researchers have explored strategies such as instruction alignment through25

code-switching and cross-lingual fine-tuning Qin et al. (2023); Huang et al. (2023), as well26

as optimizing prompts using chain-of-thought (CoT) prompting in various languages Shi27

et al. (2022). Crafting clear instructions in English has also proven effective in aligning28

model outputs Huang et al. (2023). Earlier approaches relied on translation-based methods,29

including fine-tuning for translation tasks Wu et al. (2023); Zhang et al. (2024), though these30

methods remain limited by cost and translation quality Liu et al. (2024). To address these31

challenges, Huang et al. (2024) proposed integrating external LLMs with stronger linguistic32

representations by developing a mapping layer between their representation spaces,33

improving multilingual performance. Despite these efforts, few studies have examined34

LLMs’ internal processing of multilingual prompts Wendler et al. (2024); Zhao et al. (2024),35

revealing that LLMs often translate non-English tokens into English in intermediate layers.36

37

Building on these findings and advancements in representation engineering Zou38

et al. (2023), we investigate the mechanistic interpretability of multilingualism in LLMs.39

Our approach first learns a manifold that maps between English and target languages,40

then applies it during inference instead of fine-tuning, making it more efficient and less41

disruptive to the original model as shown in Figure 1. Finally, we demonstrate how our42

method parallels fine-tuning in refining target language representations, offering new43

insights into multilingual LLM optimization. Our key contributions are as follows:44
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マンディはベネディクトに$100借りがあります。彼らは月2%の利子がつくことに同意しました。マンディが
か月後に返 できるとすると、彼女はベネディクトにいくらえばいいですか？

".التكنولوجيا تغير الطريقة التي نعيش بها ونعمل بها كل يوم
"Технологии меняют наш образ жизни и работы каждый день."

a) Training: DPO/MSE computes v b)Inference: v is added to each token’s
residual stream.

Janet lays 16 eggs daily, uses 3 for breakfast and 4
for baking, leaving 9 eggs to sell. At $2 per egg, she
earns $18 per day from egg sales at the farmer’s
market.

DPO
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Figure 1: Overview of our method: (a) Learn a steering vector v from two language corpora
at a specific layer using DPO or MSE; (b) Apply the learned vector to the residual stream of
each token in a prompt at that layer.

• We propose a method for analyzing and enhancing underrepresented languages45

in LLMs by intervening in their representations using a learned steering vector46

aligned with English.47

• We show that structurally similar languages 1 can share a learned steering vec-48

tor aligned with English representations, enabling cross-linguistic transfer and49

improved performance without language-specific tuning.50

• Our approach surpasses translation methods like NLLB (No Language Left Behind)51

and delivers results comparable to the Google Translate baseline across diverse52

datasets, highlighting LLMs’ multilingual limitations while proving the efficacy of53

internal translation alignment within the model.54

2 Related Work55

Multilingual Progress: Recent research has significantly advanced multilingual LLMs, as56

highlighted in a survey by Qin et al. (2024). Efforts to enhance multilingual performance57

primarily focus on expanding language coverage through cross-lingual instruction fine58

tuning. For example, Zhu et al. (2023) and Chen et al. (2023b) propose multilingual in-59

struction tuning methods to improve reasoning across diverse languages, while Zhu et al.60

(2024) integrates mathematical instructions to enhance logical processing. Another line of61

work explores prompt-based strategies to strengthen cross-lingual understanding. Studies62

by Qin et al. (2023) and Huang et al. (2023) show that strategically designed prompts can63

significantly enhance model performance across languages. More recent methods introduce64

external modules to supplement the model’s multilingual capabilities. Yoon et al. (2024)65

propose LangBridge, which integrates a multilingual encoder with an LLM for improved66

reasoning, though it may underutilize the LLM’s native multilingual abilities, in contrast,67

MindMerger Huang et al. (2024) aligns representations across models handling the same68

prompt, preserving intrinsic multilingual features. Despite these advances, fewer studies69

focus on how LLMs internally manage multilingualism. Notably, Wendler et al. (2024) and70

Zhao et al. (2024) analyze the internal mechanisms enabling cross-lingual understanding,71

highlighting both strengths and limitations that inform further improvements.72

1Structurally similar languages share features—genetic, geographic, syntactic, phonological, featu-
ral, and inventory-based—as defined by the lang2vec framework.
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Methods Es Ja Ru Sw Zh Bn Th De Fr Te Avg

Llama2-7B
Basic Prompt 20.0 12.8 20.0 .36 19.6 0.4 0.48 24.0 21.6 0.4 13.4
Google-Trans 26.4 24.4 24.8 26.0 27.6 26.0 24.0 22.4 24.4 24.0 25.0
Self-Trans 27.0 17.8 25.6 0.53 22.6 0.506 0.46 24.4 23.3 0.253 15.8 ↑

Aya23-8B
Basic Prompt 40.0 25.6 34.4 0.64 27.6 1.0 13.06 36.0 32.0 0.16 22.7
Google-Trans 40.4 22.0 40.8 39.6 39.2 35.6 33.6 38.0 43.2 34.4 36.9
Self-Trans 33.6 25.6 27.8 0.52 22.0 10.6 16.6 34.6 33.2 .006 21.0

Table 1: Comparison of Google-translated, native, and self-translated prompts on math
tasks using LLaMA2-7B and Aya23-8B. ↑ indicates improvement over the native prompt.
Self-translation boosts LLaMA2 -7B by 2.4% and offers modest gains for Aya23, though both
lag behind English performance.

Representation Engineering has emerged as a powerful tool for analyzing how concepts73

are processed within LLMs, addressing challenges such as truthfulness, fairness, and model74

editing Zou et al. (2023). This approach has been used to enhance model alignment and75

detect vulnerabilities, including jailbreaking risks in open-source models Wang & Shu76

(2024); Li et al. (2024a). Additionally, studies have leveraged it to investigate how LLMs77

internally represent complex concepts Lu & Rimsky (2024). Recent work by Cao et al.78

(2024) presents methods to extract refined steering vectors through preference optimization,79

allowing improved control of model behavior. These findings underscore the significant80

role of representation engineering in advancing LLM technology.81

3 Methodology82

We first analyze bottlenecks in multilingual processing by evaluating the model’s under-83

standing of non-English tokens, offering insights into the factors behind poor performance.84

3.1 Evaluating LLM’s capabilities85

Previous studies Wendler et al. (2024); Zhao et al. (2024) indicate that LLMs often trans-86

late non-English prompts into English internally, which may limit their performance. To87

investigate this, a self-translation Etxaniz et al. (2023) process was used to assess whether88

LLMs understand non-English prompts or struggle with mistranslation. Table 1 shows that89

models like Llama2 Touvron et al. (2023) and Aya23 Aryabumi et al. (2024) can translate90

non-English tokens into English and that using this self-translation leads to a 2.4% average91

improvement in Llama2’s performance compared to native prompts. Aya23 also shows92

slight improvements for low-resource languages. However, the models still do not achieve93

the same level of understanding with non-English prompts as they do with English, likely94

due to representation mapping limitations.95

3.2 Handling Multilinguality96

LLMs process multilingual tokens uniquely, as explored by Belrose et al. (2023); nostalge-97

braist (2020) using logit lens methods. These methods involve multiplying internal layer98

logits by the un-embedding matrix, revealing that many LLMs perform internal translations99

across layers, often converting token distributions into English. However, these translations100

are imperfectly aligned with English counterparts, leading to inconsistent responses when101

the same question is posed in different languages. Figure 2 illustrates the distribution of102

languages across layers in various LLMs, further supporting this observation.103

3.3 Problem Formulation104

Our goal is to develop a linear manifold that effectively bridges the gap between two105

distributions within the representation space of an LLM at a specific layer. By learning this106
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Figure 2: Distribution of non-English tokens across model families, showing how models
convert non-English prompts into English tokens across layers. Highlights differences in
multilingual input representation and translation effectiveness.

manifold, we aim to shift the less-represented distribution toward the more dominant one.107

We formulate the problem as follows.108

Given an English prompt pen and its equivalent in another language px, the hidden state109

representation at a specific layer L is defined as:110

hpen = FL(pen), hpx = FL(px)

Where FL(p) is a linear transformation applied to the raw activations of prompt p in the111

residual stream.112

Our goal is to align hpx with hpen by introducing a steering vector v, such that:113

hpen ≈ hpx + v

We aim to learn v through two distinct settings for the proposed methods.114

115

BiPO Cao et al. (2024): Building on recent research, We utilize Direct Preference116

Optimization (DPO) to construct the steering vector v, optimizing it to strengthen alignment117

with English representations while reducing alignment with target language representations.118

Unlike traditional methods, such as computing the mean difference Panickssery et al. (2024);119

Wang & Shu (2024), which measures the average activation difference between two prompts,120

or applying PCA Annah & shash42 (2023) to identify the principal direction of maximum121

variance in the data, DPO significantly improves the precision in learning the desired122

direction. By modeling the relationship between English (RT) and target language (RO)123

responses bidirectionally, the method effectively adapts v to desired language behaviors,124

enhancing multilingual processing. (See the Appendix A for mathematical details).125

126

MSE based Approach: Following Park et al. (2023), which suggests that represen-127

tations between two languages can be mapped through a linear transformation, we aim to128

align the internal representations of the target language with English by using a learnable129

steering vector. This approach adjusts the target language representation to match the130

English representation more closely. For a given input in the target language, the hidden131

state at a particular layer,132

h′px = hpx + c · v (1)

Here, v is the steering vector, and c is a scalar coefficient that controls the magnitude of the133

transformation. The objective is to minimize the difference between the transformed target134

representation R′O and the corresponding English representation Ren, which is achieved by135

minimizing the Mean Squared Error (MSE) loss function:136

4



Under review as a conference paper at COLM 2025

L = MSE(hpen , h′px ) (2)

This aims to gradually align the two language representations over time through iterative137

optimization. Further details are in Algorithms 1 and Algorithm 2.138

4 Baselines and Datasets139

Models: we evaluated five prominent open-source models with varying levels of140

multilingual support: LLama2-7B Chat Touvron et al. (2023), Aya23-8B Aryabumi et al.141

(2024), Gemma Team et al. (2024), Qwen1.5 Chat Team (2024), and LLama3-8B Grattafiori142

et al. (2024). For simplicity, the main discussion focuses on LLama2-7B Chat and Aya23-8B,143

while results for the remaining models are detailed in the appendix.144

145

Training Datasets: To learn the steering vector, we used two datasets. For multi-146

lingual mathematical reasoning, we employed MSVAMP Chen et al. (2023a), which spans147

14 languages2 across high-, medium-, and low-resource tiers. For general tasks, we used the148

Tatoeba dataset Tiedemann (2020), containing English–target language pairs across 50+149

languages. We sampled 1,000 instances per language and grouped them by resource level to150

assess the effectiveness of our approach.151

152

Evaluation Datasets: We evaluated our approach across five tasks spanning lan-153

guage understanding, commonsense reasoning, and mathematical reasoning: MGSM Shi154

et al. (2022) for math, XLNI Conneau et al. (2018) for natural language inference,155

XCOPA Ponti et al. (2020) for causal commonsense, MMLU Hendrycks et al. (2020) for156

general knowledge3, and M3Exam Zhang et al. (2023), a human exam benchmark testing157

comprehensive language understanding. This diverse suite ensures a robust evaluation158

across linguistic competencies.159

To test our hypothesis, we compared five baseline approaches for multilingual task handling:160

• Basic Prompt: The vanilla approach uses a traditional query format without any161

specialized prompting strategies.162

• Translate to English: This method leverages LLMs’ strong English abilities by163

translating non-English inputs. Following Liu et al. (2024), we used two translation164

sources:165

Google Translate: A commercial service that translates examples into English.166

NLLB Costa-jussà et al. (2022): An open-source model supporting over 200167

languages.168

• XLT Huang et al. (2023): A state-of-the-art prompting strategy that first translates169

the input question into English, then solves it step by step, leveraging the model’s170

stronger reasoning abilities in English.171

• 5-shot Learning Brown (2020): Provides five examples to improve few-shot learning172

and multilingual generalization.173

• Supervised Fine-Tuning (SFT): This approach fine-tunes all model parameters on174

a non-English dataset and evaluates performance on downstream tasks.175

5 Experimental Results176

We designed our experiments to address three key research questions: RQ1: Does probing177

internal representations improve the model’s performance? (subsection 5.1) RQ2: Can we178

quantify the quality of the internal translation process? (subsection 5.2) RQ3: Is the steering179

vector transferable across languages? (subsection 5.3)180

2es: Spanish, fr: French, ru: Russian, de: German, ja: Japanese, zh: Chinese, tr: Turkish, ar: Arabic,
vi: Vietnamese, hi: Hindi, el: Greek, id: Indonesian, it: Italian, pt: Portuguese.

3We sampled 1k and 500 records from MMLU and XLNI, respectively.
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Aya23-8B

Methods MGSM XCOPA XLNI M3EXAM MMLU
Basic 32.6 81.6 49.9 46.9 45.3
Google-Tr 37.6 83.9 52.4 49.4 50.7
NLLB 32.3 73.2 49.9 26.5 34.0
5@Shot 36.1 84.5 59.8 42.5 30.9
XLT 26.9 12.1 52.7 38.8 27.0
SFT 34.4 82.0 49.8 47.4 46.0

BIPO-steer 38.6 86.1 58.5 52.7 49.0
MSE-steer 35.7 81.6 50.5 47.4 47.6

Llama2-7B

Basic 19.6 47.6 46.9 30.6 31.3
Google-Tr 25.0 51.8 50.9 42.8 41.5
NLLB 22.6 40.4 49.7 20.9 24.5
5@Shot 12.2 29.6 14.7 12.6 24.4
XLT 20.2 47.2 45.8 28.5 23.6
SFT 24.0 49.9 49.4 36.4 34.0

BIPO-steer 22.9 52.2 55.1 38.4 34.4
MSE-steer 22.8 50.3 48.7 35.1 36.0

Table 2: Average accuracy across tasks for Aya23-8B and LLaMA2-7B Chat over 10 languages
spanning high, medium and low-resource levels. Green indicates highest performance; red
indicates lowest across methods.

5.1 Does representation intervention boost model performance?181

To address the question, we tested our approach on five distinct tasks (detailed in section 4).182

We used BiPO 3.3 and MSE methods 3.3 to learn a steering vector v that aligns target183

language token representations more closely with their English counterparts. As shown184

in Figure 3, the distribution of prompts shifts significantly after steering, bringing target185

language representations closer to the English distribution. Results in Table 2 indicate that186

DPO-Steering vectors consistently outperform MSE-alignment methods across most bench-187

marks in 11 languages, albeit marginally. This advantage arises from DPO’s direct feedback188

mechanism, where the steering vector v is added to a specific model layer, and outputs are189

compared to ground truth in real time, enabling faster and more precise adjustments. In190

contrast, MSE-based methods rely on slower, iterative optimization. Both steering methods191

significantly improve over basic prompting across various models, as shown in Figure 4.192

Both Methods outperforms baselines such as XLT, 5-shot prompting, and SFT, the latter193

requiring extensive fine-tuning and incurring substantial costs while achieving perfor-194

mance comparable to translation-based approaches like Google Translate, and surpassing195

the translation baseline NLLB. For instance, on the Aya23-8B model, DPO methods surpass196

all baselines except for MMLU. Similarly, on Llama2 models, steering methods outperform197

NLLB across all tasks due to NLLB’s lower translation quality, though they slightly trail198

behind Google Translate. These results are consistent across various models, including199

larger ones like 13B, with detailed findings in Appendix D.200

5.2 Can we quantify the quality of the internal translation process?201

Following the approach of Li et al. (2024b), who introduced a language ranker to assess202

LLM performance across multiple languages, we evaluate the quality of internal translation203

by measuring how closely the representation distribution of each target language aligns204

with English. This alignment serves as a crucial indicator of translation effectiveness205

and is heavily influenced by the amount of pre-training data available for each language.206

As illustrated in Figure 5, high-resource languages such as French, German, Italian, and207

Spanish—well represented in the pre-training corpus—exhibit stronger alignment with208

6
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English in models like LLaMA2. Aya23, designed with extensive multilingual capabilities,209

improves alignment for some low-resource languages, although challenges persist. In210

contrast, Qwen1.5 struggles with alignment for most languages, except for French and211

Vietnamese, where it performs comparably to Aya23. A notable observation is Qwen1.5’s212

tendency to internally translate into Chinese, likely due to its extensive training on a Chinese-213

dominant corpus. Overall, these findings indicate that high-resource languages benefit214

from more robust internal translations, while mid and low resource languages, such as Thai,215

Bengali, and Telugu, exhibit weaker alignment. This misalignment can lead to potential216

information loss, highlighting disparities in multilingual model performance across different217

language groups.218

5.3 Is the steering vector transferable across languages?219

Prior studies Cao et al. (2024) have demonstrated that the steering vector’s transferability is220

achievable across models within the same architectural family, especially for concepts like221

power-seeking behavior. Building on this, we explored the transferability of an optimized222

steering vector across languages. As shown in Figure 6, transfer is more effective between223

languages with similar representations, while performance declines as representational224

distance grows.225
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6 Ablation & Analysis226

6.1 Steering Vector is fine-grained227

To further analyze general task performance, we observe that the steering vector is most228

effective when the test data distribution closely aligns with the training data. Since the229

steering vector captures only a linear direction, it may struggle with intricate linguistic230

nuances across languages. Learning the steering vector on datasets with similar distributions231

to the evaluation data is crucial for optimal results. As shown in Figure 11, models surpass232

the Google Translate baseline in certain tasks but lag slightly when training and testing233

distributions diverge. While the fixed steering method improves over other baselines,234

its static nature across different prompts imposes inherent limitations, which could be235

addressed by learning token specific steering.236

6.2 Think Before Probing!237

Previous research Zhao et al. (2024); Zhong et al. (2024) suggests that LLMs process informa-238

tion in three distinct stages, with middle layers playing a critical role in reasoning and task239

performance. To investigate this, we evaluated the impact of injecting the learned vector240

at different stages—early, middle, and late layers—following the functional distinctions241

established in prior studies Zhao et al. (2024). The vector was applied to the residual stream242

of each layer with a fixed coefficient (c = 1), and performance was assessed across all layers.243

While not an exhaustive empirical study, this approach provides insights into how sensitive244

representations are to modifications. As shown in Figure 10 (see Table D), results vary245

between models. In Aya23, injecting the vector into early layers significantly improves246

mathematical reasoning and other tasks. This effect is attributed to Aya23’s multilingual247

training, which aligns different language distributions into a more agnostic space, reducing248

inner translation errors. By addressing errors earlier in processing, the model requires249

fewer layers to properly interpret multilingual tokens. For LLaMA2, probing the initial and250

middle layers benefits medium and low-resource languages the most, while high-resource251

languages show greater sensitivity in the upper layers. This suggests that modifying early252

and middle layers in high-resource languages can disrupt the model’s learned agnostic253

representation. In contrast, injecting the vector into the final layer does not yield substantial254

improvements, likely because the model’s loss reduction does not occur within the agnostic255

representation space.256

6.3 High Resource Languages are dominant in Representation Space257

A thought-provoking question emerges when examining the focus of LLMs on agnostic258

language representation: despite recent studies Zhao et al. (2024); Zhong et al. (2024)259

suggesting that LLMs primarily process information in English, we seek to explore whether260

these models specifically ”think” in English or, more broadly, in high resource languages. To261

investigate this, we carefully selected three high-resource languages4, Spanish, German, and262

French, and rigorously tested this hypothesis using the MGSM task. The results, presented263

in ( Table 5 in the appendix), reveal that these high-resource languages Spanish, German,264

and French show performance comparable to English, suggesting that LLMs’ language-265

agnostic representations extend beyond English. This indicates the models process language266

more sophisticated than previously thought. We leave further investigation to future work.267

6.4 Impact of Steering Vectors on English Capabilities268

To assess the potential impact of steering vectors on the performance of monolingual English269

prompts, we evaluated nine different steering vectors, each tailored to a specific language270

and applied at various layers of the model. This evaluation aims to determine whether271

these vectors degrade the performance of English tasks, comparing the performance of272

4Selected for their linguistic closeness to English and high cosine similarity in the model’s repre-
sentation space.
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each language-specific steering vector against the baseline monolingual results. Table 3273

demonstrates that probing has a negative impact, which intensifies as the representational274

distance between two languages increases. Conversely, the negative impact lessens for more275

similar languages. In models like LLaMA2, this correlation is pronounced, whereas, in276

Aya-23, which features more robustly represented languages, the impact is slightly reduced.277

Language En Es De Fr Ja Zh Ru Sw Bn Th

Llama2-7B 32.0 31.6 26.8 26.4 24.8 25.6 28.0 26.8 30.8 28.8
Aya23-8B 43.2 42.0 39.2 41.2 40.8 41.6 34.4 – – –

Table 3: Results of MGSM task on Llama2-7B and Aya23-8B across different languages. The
steering vector has a negative impact on English prompts.

7 Fine tuning vs Steering approach278

To compare fine-tuning and steering in multilingual reasoning tasks, we adapted a two-279

phase fine-tuning approach from Zhu et al. (2024), focusing only on the first phase: fine-280

tuning LLaMA2-7B on English-to-target language translation tasks. We chose En-¿Target281

fine-tuning as it forces target generation from English inputs, refining target representations282

for English alignment in a way analogous to our steering vector. This phase enhances283

the model’s internal alignment with English representations, creating a more structured284

and consistent mapping across layers, as shown in Figure 9 (appendix). In contrast, the285

base model shows weaker translation alignment, underscoring the role of fine-tuning in286

improving internal consistency. Steering achieves a similar effect by applying a vector at287

a specific layer, realigning representations toward English, and influencing subsequent288

layers. Both methods enhance multilingual representation consistency: fine-tuning refines289

alignment gradually while steering adjusts layers directly. Further details are in Appendix C.290

7.1 High-Capability Models and Inner Translation Behavior291

In this section, we investigate the behavior of high-capacity multilingual LLMs, such292

as LLama3.1 Grattafiori et al. (2024) and Aya23-Expanse Odumakinde et al. (2024), to293

understand the factors behind their superior performance across languages. Using the294

logit lens, we analyze their internal representations and find that multilingual processing295

primarily occurs in the initial layers, with minimal inner translation loss (illustrated in296

Figure 8 in the appendix). These models map multilingual representations onto an English-297

aligned distribution early on, creating a shared, agnostic space. This alignment, enhanced298

by techniques like SFT and reinforcement RLHF, explains their effectiveness. For instance,299

Aya-Expanse shows significant improvements due to these methods Dang et al. (2024).300

Our findings align with prior studies, confirming that SFT and RLHF substantially boost301

multilingual performance, consistent with earlier observations on the impact of SFT on302

internal representations Dang et al. (2024).303

8 Conclusions304

In this paper, we advance the study of multilingual processing in LLMs, exploring im-305

provements across languages with varying resource levels. We analyzed LLM alignments306

from a multilingual perspective, highlighting how techniques like SFT and RLHF enhance307

multilingual capabilities by comparing these methods with steering and probing approaches308

and identifying limitations in steering vectors for handling linguistic nuances. Empirical309

experiments showed that probing inner layers boosts multilingual task performance but310

may hinder monolingual performance. Analysis of LLM families shows their sensitivity to311

layer-level changes, highlighting the importance of careful tuning and alignment to optimize312

multilingual performance.313

9
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Limitations314

We acknowledge that our approach, which involves probing by sweeping across all model315

layers, is not scalable for LLMs and is impractical for real-world applications. Moreover,316

the learnable steering vector is constrained by its fixed linear direction, limiting its capacity317

to capture the intricate mapping relationships between languages fully; learning steering318

vectors by individual tokens seems more promising than fixed steering. We leave this319

for future work. Additionally, our experiments focused on probing a single layer at a320

time; exploring the impact of probing multiple layers simultaneously could yield further321

improvements and is a promising avenue for future work.322

Ethics Statement323

This research adheres to ethical guidelines in the development and application of large324

language models (LLMs). We acknowledge the potential risks associated with multilingual325

processing, including biases in language representation, unequal performance across high-326

and low-resource languages, and the unintended consequences of steering techniques.327

Efforts were made to ensure transparency in our methodology and to mitigate biases by328

evaluating models across diverse languages and tasks. However, we recognize that our329

work may still reflect inherent biases present in the training data or model architectures. We330

encourage further research to address these limitations and promote equitable performance331

across all languages. Additionally, we emphasize the importance of responsible AI practices,332

including the careful deployment of LLMs in real-world applications to avoid harm or333

misuse.334

References335

Annah and shash42. Evaluating hidden directions on the utility336

dataset, 2023. URL https://www.lesswrong.com/posts/JCgs7jGEvritqFLfR/337

evaluating-hidden-directions-on-the-utility-dataset. Accessed: 2025-02-13.338

Viraat Aryabumi, John Dang, Dwarak Talupuru, Saurabh Dash, David Cairuz, Hangyu Lin,339

Bharat Venkitesh, Madeline Smith, Jon Ander Campos, Yi Chern Tan, Kelly Marchisio,340

Max Bartolo, Sebastian Ruder, Acyr Locatelli, Julia Kreutzer, Nick Frosst, Aidan Gomez,341
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A Learning the Steering Vector496

In the first scenario, we utilize previous work Cao et al. (2024) that applied Direct Preference497

Optimization (DPO) methods to construct the steering vector. Specifically, Optimizing498

v increases the probability of generating responses that align with the desired language499

behavior (e.g., English) while reducing the likelihood of responses associated with the500

opposite behavior (e.g., the target language). In this case, the contrast is defined between501

two language pairs: the English response Rt and the target language response RO.502

min
v
−Ed∼U ,(q,rT ,rO)∼D

[
log σ

(
dβ log

πL+1(rT |AL(q) + dv)
πL+1(rT |AL(q))

− dβ log
πL+1(rO|AL(q) + dv)

πL+1(rO|AL(q))

)]
.

(3)
503

Where: v is the learnable steering vector, σ represents the logistic function.β controls the504

deviation from the original model. πL+1(·|AL(q)) denotes the model’s response from layer505

L + 1, given the activation AL(q) at layer L for the input question q.The term d flips the506

optimization direction:507

• d = 1, the steering vector is optimized towards the English behavior rT .508

• If d = −1, the steering vector is optimized towards the opposite behavior rO.509

By optimizing this bi-directional objective, the steering vector v is trained to align with510

either the desired target behavior or its reverse, depending on the directional coefficient511

d. This approach ensures that both language behaviors target and opposite are captured512

effectively, enhancing the model’s ability to differentiate between them with precision.513

A.1 Algorithms514

Algorithm 1 BiPO Steering Vector Learning

Require: Pretrained LLM M, bilingual corpus D = {(qi, qen
i )}, layer L, learning rate η,

epochs T
Ensure: Steering vector v ∈ Rd

1: Initialize v← 0
2: for e← 1, . . . , T do
3: for all (q, qen) ∈ D do
4: ▷ 1. Extract hidden activations at layer L
5: h← HiddenState(M, q, L)
6: hen ← HiddenState(M, qen, L)
7: ▷ 2. Inject steering vector
8: h̃← h + v
9: ▷ 3. Compute logits from both activations

10: ℓ← Logits(M, h̃)
11: ℓen ← Logits(M, hen)
12: ▷ 4. Direct Preference Optimization (DPO) loss

LDPO = −Et∼V
[
log σ

(
ℓen

t − ℓt
)]

(see App. A, eq.3)

13: ▷ 5. Gradient-step update
14: v← v − η∇v LDPO
15: end for
16: end for
17: Return v
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Algorithm 2 MSE Steering Vector Learning

Require: Pretrained LLM M, bilingual corpus D = {(qi, qen
i )}, layer L, learning rate η,

epochs T
Ensure: Steering vector v ∈ Rd

1: Initialize v← 0
2: for e← 1, . . . , T do
3: for all (q, qen) ∈ D do
4: ▷ 1. Extract hidden activations at layer L
5: h← HiddenState(M, q, L)
6: hen ← HiddenState(M, qen, L)
7: ▷ 2. Inject steering vector
8: h̃← h + v
9: ▷ 3. Compute Mean-Squared Error loss

LMSE =
1
d
∥∥h̃ − hen∥∥2

2

10: ▷ 4. Gradient-step update
11: v← v − η∇v LMSE
12: end for
13: end for
14: Return v

A.2 Other learning methods515

Effectively learning a manifold that encapsulates the feature representations between lan-516

guages is vital for bridging the distributional gap across linguistic boundaries. While prior517

approaches Cao et al. (2024); Zou et al. (2023), such as PCA and calculating the mean518

difference between constructive activations (CAA), have been shown to shift activation519

distributions, they fall short in accurately capturing essential features in multilingual con-520

texts. In contrast, advanced methods like BiPO excel by leveraging a dynamic feedback521

loop during the manifold learning process, enabling them to better align multilingual rep-522

resentations. Figure 7 highlights the performance of various models across diverse tasks,523

underscoring the effectiveness of this approach.

XCOPA XLNI M3EXAM MMLU MGSM
0.0

0.2
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0.6

0.8

Aya23-8B

XCOPA XLNI M3EXAM MMLU MGSM
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Figure 7: demonstrate that using learnable steering vectors surpasses PCA and the Mean
Difference approaches across all tasks on two models: Aya32-8B and LLama2-7B.

524
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B SFT Vs Steering: Problem Setup and Notation525

LetM represent the base LLM andM∗ denote the fine-tuned version trained on an instruc-526

tion dataset D, where D = (Qi, Ai)
n
i=1 consists of question-answer pairs. To analyze the527

mechanisms of fine-tuning, we model the transformation of each layer l as:528

Hl(x) = hl(x) + Sl(x) (4)

where:529

• hl(x) represents the original layer l activation for input x530

• Sl(x) ∈ Rd is a learnable parameter matrix that modulates the activation in the531

residual stream532

• d is the dimensionality of the hidden state533

For each (Q, A) ∈ D, Hl is optimized via the loss function:534

L(M(Q), A) = −
T

∑
t=1

log P(at|a<t, Q; θ) (5)

where:535

• θ∗ represents the fine-tuned model parameters536

• at is the t-th token in the answer A537

• T is the length of the answer538

In contrast, the steering approach learns a single steering vector v ∈ Rd that modifies539

activations across all layers:540

Hl(x) = hl(x) + αv (6)
where v is the learned steering direction , α is a scaling coefficient that controls the magnitude541

of steering ,The same v is applied across different (Q, A) pairs542

C Hyperparameters543

Training Steering Vectors: For all models, we followed the authors’ Cao et al. (2024)544

configurations, setting β = 0.1, using the AdamW optimizer with a learning rate of 5× 10−4,545

and applying a weight decay of 0.05. The batch size was set to 1, and we utilized a cosine546

learning rate scheduler with 100 warmup steps. The number of epochs was set to 1 for all547

models, except for certain languages in LLama2 and Aya23-8B, where it was increased to 3548

epochs. For the MSE method, we used a learning rate of 1× 10−8 and varied the number of549

epochs in the range [3, 5, 8, 12]. Mean Squared Error (MSE) was used as the loss function,550

and cosine similarity was employed to evaluate the similarity between raw activations551

during training.552

553

For the supervised fine-tuning described in section 7, we trained the models on the554

same training datasets for 5 epochs, using a learning rate of 1× 10−3, a weight decay of555

0.001, and a warmup ratio of 0.05. The batch size was set to 16, and we utilized a cosine556

learning rate scheduler with the AdamW optimizer.557

D Larger LLMs Exhibit Consistent Behavior558

To address translation loss misalignment in larger language models, we extended our559

evaluation of steering approaches to larger architectures. Due to computational constraints,560

we tested only LLama2-13B on the MGSM task. Table 4 indicates that these larger models561

follow the same trend of performance improvements across different languages, mirroring562

the behavior observed in smaller models.563
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MGSM Es Fr Ru De Ja zh Avg

Llama2-13B
Basic Prompt 33.6 30.0 28.0 30.8 18.0 26.4 27.8
Google-Tr 39.2 35.2 36.8 36.4 35.6 36.4 36.6
NLLB 35.2 33.6 32.0 34.0 20.0 28.0 30.4
5@shots 35.2 32.8 26.8 33.2 18.4 23.6 28.3
XLT 33.6 30.4 30.8 27.6 25.2 29.6 29.5
SFT 35.4 35.0 31.8 34.4 26.0 28.1 31.7

Bipo-method 36.8(+3.2) 33.2(+3.2) 31.6(+3.6) 35.2(+4.4) 26.8(+8.8) 29.2(+2.8) 32.1(+4.3)
MSE-method 32.4(−1.2) 34.8(+4.8) 34.0(+6) 35.2(+4.4) 24.4(+6.4) 30.0(+3.6) 31.8(+4.0)

Table 4: Results of the MGSM Task Evaluated on the Llama2-13B Model Across Diverse
Languages
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Figure 8: illustrates the processing of multilingual tokens in models of varying capabilities
within the same family. LLama3.1 demonstrates a strong alignment of tokens into English-
aligned representations, whereas LLama2 struggles with this. Similarly, Aya-Expanse
exhibits robust token alignment, attributed to RLHF techniques, while Aya23 shows weaker
alignment.
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Figure 9: : Distribution of non-English token values across model layers at three different
stages: pre-fine-tuning (base model), post-fine-tuning(SFT), and after applying steering at
a specific layer. The results demonstrate that both fine-tuning and steering exhibit similar
behavior, aligning non-token values more closely with English token distributions.
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Figure 10: illustrates the layers most sensitive to probing across two models. Aya23 demon-
strates high sensitivity in the initial layers but exhibits reduced performance in the middle
and later layers. In contrast, LLama2 experiences a notable drop in performance in the
middle layers, with improved results in the later layers. Additionally, the initial layers of
LLama2 perform better for low- and medium-resource languages.
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Figure 11: The sub-figures illustrate the distribution of the training and testing datasets
across various tasks, emphasizing that steering approaches perform effectively when the
testing dataset’s distribution closely aligns with the training dataset’s distribution but show
limited improvement when the two distributions differ significantly.
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Models Lang-Rep Fr Ru Ja Es Zh De

Aya23-8B

Fr - 34.3 25.6 40.0 27.6 36.0

Es 32.0 34.4 25.6 - 27.6 36.0

De 32.0 34.4 25.6 40.0 27.6 -

En 38.0 41.2 34.8 44.4 32.8 40.4

Llama2-7B

Fr - 23.2 18.4 24.4 20.4 25.2

Es 24.4 22.8 17.6 - 21.2 26.0

De 26.0 21.6 17.6 24.4 22.0 -

En 25.6 23.2 20.8 25.2 21.6 24.8

Table 5: The table highlights the selection of high-resource languages, such as French,
Spanish, and German, as agnostic languages within the representation space of LLMs. The
results indicate that English remains the most dominant language in this space. Other
high-resource languages achieve comparable results, suggesting that their representations
are distributed with similar likelihoods within the shared representation space.
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Llama3-8B

Methods MGSM XCOPA XLNI M3EXAM MMLU
Basic 62.0 66.7 63.2 51.6 50.7
Google-Tr 70.7 79.3 65.8 54.5 58.2
NLLB 60.0 63.4 63.4 23.9 40.7
5@Shot 55.6 63.5 27.6 24.1 26.0
XLT 26.9 56.9 55.0 39.2 33.7
SFT 64.7 72.2 63.9 53.8 51.6

BIPO-steer 67.0(+5.0) 75.0(+8.3) 64.3(+1.1) 55.3(+3.7) 52.8(+2.1)
MSE-steer 62.8(+0.8) 68.4(+1.7) 64.0(+0.8) 53.0(+1.4) 50.6(−0.1)

Gemma-7B

Basic 27.3 66.2 46.4 37.3 39.6
Google-Tr 37.4 83.1 51.0 45.4 47.0
NLLB 29.8 65.4 50.0 23.0 33.8
5@Shot 12.2 42.2 39.6 20.2 22.0
XLT 28.7 49.8 49.9 28.1 26.5
SFT 28.6 67.8 49.2 43.1 40.8

BIPO-steer 30.0(+2.7) 68.8(+2.6) 51.9(+5.5) 45.7(+8.4) 41.1(+1.5)
MSE-steer 27.6(+0.3) 68.0(+1.8) 47.9(+1.5) 37.5(+0.2) 41.1(+1.5)

Qwen1.5-7B

Basic 49.2 70.1 66.0 58.3 42.1
Google-Tr 52.6 79.3 65.4 57.2 46.1
NLLB 47.4 63.4 64.3 31.8 31.3
5@Shot 46.8 74.6 65.0 46.7 48.1
XLT 49.4 64.4 55.6 54.2 39.7
SFT 50.6 71.6 67.4 58.2 43.8

BIPO-steer 52.8(+3.6) 73.8(+3.7) 67.8(+1.8) 58.7(+0.4) 42.9(+0.8)
MSE-steer 50.5(+1.3) 70.7(+.7) 68.7(+2.7) 59.7(+1.4) 46.4(+4.3)

Table 6: Presents the average accuracy across various tasks for Three models: Llama3-8B
, gemma-7Ba and Qwen1.5-7B . The evaluation spans over 10 languages, covering high,
medium, and low-resource levels. (+) symbol indicates the average improvement compared
to the Basic Prompt baseline.
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E Examples of different tasks564

Examples of model-generated responses under both original and steered conditions when565

prompted with questions in different languages. The correct answers are highlighted in566

green, while incorrect answers are marked in red for clarity.567

Question マンディはベネディクトに$100借りがあります。彼らは月2%の利子がつくことに同意しました。マンディが3か月後
に返できるとすると、彼女はベネディクトにいくらえばいいですか？ Let’s think step by step.

Original generation Mandy borrowed $100 from Benedict with an agreement to pay 2% interest per month.
1. Calculate the total interest due after 3 months:
$100 x 2% x 3 months = $6
So, the total amount Mandy owes Benedict after 3 months is $106 ($100 + $6).
2. Calculate the monthly payment amount:
To find the monthly payment amount, we need to divide the total amount owed by the number of months left to repay
the loan. In this case, there are 3 months left to repay the loan, so:
$106 ÷ 3 months = $35.33
So, Mandy needs to pay $35.33 per month to Benedict.

Steered generation 1. Mandi borrowed $100 from Benedict with an agreement to pay 2% interest per month.
2. The loan is to be repaid 3 months from now.
So, we need to calculate the total amount that Mandi needs to pay to Benedict to settle the loan.
First, let’s calculate the interest for the 3 months:
2% per month x 3 months = 6% interest
Now, let’s calculate the total amount that Mandi needs to pay:
Original amount borrowed: $100
Interest: $6 (6% of $100)
Total amount to be paid: $106
So, Mandi needs to pay $106 to Benedict to settle the loan.

Question Les canes de Janet pondent 16 œufs par jour. Chaque matin, elle en mange trois au petit djeuner et en utilise quatre
autres pour prparer des muffins pour ses amis. Ce qui reste, elle le vend quotidiennement au march fermier, au prix de
2 $ l’œuf de cane frais. Combien (en dollars) gagne-t-elle chaque jour au march fermier ? Let’s think step by step.

Original generation Janet’s chickens lay 16 eggs per day.
She eats 3 eggs for breakfast every day.
She uses 4 eggs to make muffins for her friends.
So, the number of eggs she has left to sell at the farmer’s market is:
16 eggs/day - 3 eggs/day = 13 eggs/day
Since she sells each egg at $2, Janet earns:
13 eggs/day x $2/egg = $26/day
So, Janet earns $26 per day at the farmer’s market.

Steered generation 1. Janet lays 16 eggs per day.
2. She eats 3 eggs for breakfast every day.
3. She uses 4 eggs to make muffins for her friends.
4. So, how many eggs does she have left to sell at the farmer’s market?
16 eggs/day - 3 eggs/day = 13 eggs/day
13 eggs/day - 4 eggs/day (for muffins) = 9 eggs/day
Janet has 9 eggs left to sell at the farmer’s market every day.
Now, let’s calculate how much money she makes from selling those eggs:
9 eggs/day x $2/egg = $18/day
So, Janet makes $18 per day selling eggs at the farmer’s market.

Question A seguir esto questes de mltipla escolha sobre Linguagens. Por favor, d apenas a opo correta, sem quaisquer outros
detalhes ou explicaes.
Por que as formigas no morrem quando postas em forno de micro-ondas?
As micro-ondas so ondas eletromagnticas com frequncia muito alta. Elas causam vibrao nas molculas de gua, e isso
que aquece a comida. Se o prato estiver seco, sua temperatura no se altera. Da mesma maneira, se as formigas tiverem
pouca gua em seu corpo, podem sair inclumes. J um ser humano no se sairia to bem quanto esses insetos dentro de
um forno de micro-ondas superdimensionado: a gua que compe 70% do seu corpo aqueceria. Micro-ondas de baixa
intensidade, porm, esto por toda a parte, oriundas da telefonia celular, mas no h comprovao de que causem problemas
para a populao humana.
OKUNO, E. Disponvel em: http://revistapesquisa.fapesp.br. Acesso em: 11 dez. 2013.
Os textos constroem-se com recursos lingusticos que materializam diferentes propsitos comunicativos. Ao responder
pergunta que d ttulo ao texto, o autor tem como objetivo principal:
A. defender o ponto de vista de que as ondas eletromagnticas so inofensivas.
B. divulgar resultados de recentes pesquisas cientficas para a sociedade.
C. apresentar informaes acerca das ondas eletromagnticas e de seu uso.
D. alertar o leitor sobre os riscos de usar as micro-ondas em seu dia a dia.
E. apontar diferenas fisiolgicas entre formigas e seres humanos.
Responder:

Original generation A resposta correta a alternativa: E.

Steered generation The correct answer is C.
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