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Abstract

Large language models (LLMs), despite their ability to perform few-shot1

machine translation (MT), often lag behind dedicated MT systems trained2

on parallel corpora, which are crucial for high quality machine translation3

(MT). However, parallel corpora are often scarce or non-existent for low-4

resource languages. In this paper, we propose CycleDistill, a bootstrapping5

approach leveraging LLMs and few-shot translation to obtain high-quality6

MT systems. CycleDistill involves iteratively generating synthetic parallel7

corpora from monolingual corpora via zero- or few-shot MT, which is then8

used to fine-tune the model that was used for generating said data for9

MT. CycleDistill does not need parallel corpora beyond 1 to 4 few-shot10

examples, and in our experiments focusing on three Indian languages, by11

relying solely on monolingual corpora, it can achieve high-quality machine12

translation, improving upon a few-shot baseline model by over 20-30 chrF13

points on average in the first iteration. We also study the effect of leverag-14

ing softmax activations during the distillation process and observe mild15

improvements in translation quality.16

1 Introduction17

Machine translation (MT) for low-resource languages poses persistent challenges due18

to the limited availability of bilingual corpora and the linguistic variation these lan-19

guages exhibit. Although large language models (LLMs) can perform translation with20

minimal supervision, their effectiveness in low-resource settings is typically inferior21

to systems trained with substantial parallel data (Koehn et al., 2017; Gu et al., 2018).22

Figure 1: Overview of CycleDistill, which iter-
atively builds synthetic data from monolingual
corpora and refines models via cyclic distillation.

This paper introduces CycleDistill, a23

resource-efficient framework for improving24

translation quality without requiring ex-25

tensive parallel data. The approach begins26

with a small set of example translations27

and utilizes LLMs to generate synthetic28

parallel corpora from monolingual text.29

These corpora are then used to iteratively30

fine-tune the translation model, enabling31

progressive performance gains with each32

cycle.33

The framework incorporates two key tech-34

niques. First, Iterative Synthetic Data Distilla-35

tion leverages repeated cycles of data gener-36

ation and model training to enhance trans-37

lation performance over time (Kim et al.,38

2021). Second, Soft Distribution-Preserving39

Distillation transfers detailed token-level40

probability distributions from teacher to stu-41

dent models, allowing for more comprehen-42

sive knowledge retention (Tan et al., 2019). Building on previous work in self-training (He43

et al., 2020), sequence-level and soft-target knowledge distillation (Kim & Rush, 2016; Hin-44
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ton et al., 2015), CycleDistill offers a practical and scalable solution for MT in low-resource45

scenarios.46

The main contributions of this work are as follows:47

• We present CycleDistill, a self-supervised MT framework that improves translation48

quality using only monolingual corpora and minimal supervision.49

• We propose a token-level soft distillation strategy to facilitate richer and more50

effective learning from teacher models.51

• We demonstrate that our method achieves substantial improvements of 20-30 chrF52

points over few-shot translation baselines, with consistent chrF score gains across53

three Indian low-resource languages.54

2 Related work55

Low-resource machine translation (MT) remains a challenge due to limited parallel corpora56

and high linguistic diversity (Koehn et al., 2017; Gu et al., 2018). Knowledge distillation (KD)57

helps mitigate this by transferring knowledge from larger teacher models to smaller student58

models (Hinton et al., 2015). Approaches like sequence-level KD (Kim & Rush, 2016) and59

iterative self-training (Kim et al., 2021; Furlanello et al., 2018) have improved low-resource60

and multilingual MT (Tan et al., 2019). Advances such as continual KD (Zhang et al., 2023)61

and encoder-aware KD (Velayuthan et al., 2025) aim to enhance efficiency in constrained62

settings. Back-translation and its iterative variants are also effective in low-resource MT63

by generating synthetic data from monolingual corpora (?Edunov et al., 2018; Hoang et al.,64

2018). They perform well in extremely low-resource and Indic language contexts, especially65

with transfer learning and data filtering (Luo et al., 2020; Tars et al., 2021; Ahmed et al., 2023;66

Krishnamurthy et al., 2024).67

Despite progress, integrating KD and back-translation and understanding their relative68

effectiveness in low-supervision settings remain open research questions.69

Our proposed CycleDistill framework is novel in that it builds effective MT systems from70

only monolingual data and a few examples, without large-scale parallel corpora. It uniquely71

combines cyclical synthetic data generation with token-level soft distillation, allowing72

progressive model refinement and compression.73

3 Methodology74

This work enhances low-resource to English translation using two iterative distillation75

strategies: cyclic synthetic data generation and a refined distillation method that retains76

token-level details like softmax scores and subword patterns. Our approach builds on recent77

advances in knowledge distillation and self-training for neural MT (Kim & Rush, 2016; Gou78

et al., 2021).79

3.1 Iterative synthetic data distillation80

Our first approach enables the base translation model to iteratively improve by generating81

and learning from its own synthetic data. The procedure is as follows:82

• Base Model Initialization: The process begins with a pretrained base translation83

model, denoted as M0, which is capable of translating from an Indic language to84

English.85

• Synthetic Data Generation: The model M0 is employed to generate a synthetic86

dataset D0 comprising translation pairs. This step is inspired by self-training87

methodologies that have demonstrated efficacy in low-resource scenarios (He et al.,88

2020).89

• Self-Distillation: Utilizing the generated synthetic data, knowledge distillation is90

performed in two ways:91

2



Under review as a conference paper at COLM 2025

– The same model architecture is further refined, resulting in an updated model92

M1.93

– Additionally, knowledge is distilled into a smaller student model, M′1, via94

sequence-level knowledge distillation, whereby the student learns from the95

teacher’s generated translations (Kim & Rush, 2016).96

• Iterative Refinement: This procedure is repeated for three cycles. In each iteration i97

(where i = 1, 2, 3):98

– The distilled model Mi (or M′i) produces a new dataset Di comprising addi-99

tional translations.100

– Subsequently, Mi is distilled into Mi+1 and a new student model M′i+1.101

The underlying principle is that, by iteratively learning from its own outputs, the model102

can progressively improve its performance. This iterative process benefits both the primary103

and the student models, enhancing their generalization capabilities and, in certain cases,104

enabling model size reduction with minimal compromise in performance.105

3.2 Soft distribution-preserving distillation106

The second strategy extends the distillation process by capturing more granular information107

from the teacher model:108

• Enhanced Data Extraction: During synthetic translation generation, for each token109

position t, we record:110

– The top-k token predictions {y(t)1 , . . . , y(t)k } (Fan et al., 2018)111

– The corresponding softmax probabilities {p(t)1 , . . . , p(t)k }, ensuring ∑k
j=1 p(t)j ≤ 1112

This comprehensive information set is motivated by the demonstrated effectiveness113

of soft-target distillation in capturing the teacher model’s knowledge (Hinton et al.,114

2015).115

• Logit-Based Distillation: The student model is trained to match not only the final116

output sequences but also the softmax distributions over the top-k tokens at each117

position. This is achieved by minimizing the Kullback-Leibler (KL) divergence (Kull-118

back & Leibler, 1951) loss:119

LKD =
T

∑
t=1

KL
(

P(t)
teacher ∥ P(t)

student

)
(1)

where T denotes the sequence length, and P(t) represents the softmax distributions.120

This approach enables the student model to more accurately approximate the121

teacher’s behavior, as suggested in prior research (Hinton et al., 2015; Mukherjee &122

Khapra, 2021).123

• Iterative Distillation: This process is also conducted over three iterations. In each124

cycle, the student from the previous round assumes the role of the new teacher,125

and a fresh synthetic dataset is generated, ensuring the transfer of rich token-level126

distributions.127

4 Experiments128

This section outlines the experimental framework designed to investigate the efficacy of129

iterative knowledge distillation in enhancing machine translation quality. Our approach130

involves distilling knowledge from larger language models into smaller counterparts, fol-131

lowed by comprehensive performance evaluation across multiple metrics and languages.132
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4.1 Models and languages133

Our study employs four language models of varying sizes from the LLaMA (Meta, 2024)134

and Gemma (Google, 2024) families: Gemma 2 9B (G9B), Gemma 2 2B (G2B), LLaMA 3.1135

8B (L8B) and LLaMA 3.2 3B (L3B). Each larger model undergoes distillation to produce136

both a refined same-size model and a compressed smaller model, adhering to established137

Sequence Distillation principles (Kim & Rush, 2016). Our evaluation encompasses three138

Indic languages: Hindi (HIN), Bengali (BEN) and Malayalam (MAL).139

4.2 Distillation process140

For a given teacher model T, distillation is performed to produce two student models:141

• Same-size student (Ssame ← T)142

• Smaller student (Ssmall ← T)143

The distillation relationships are formally expressed as:144

G9B → {G′9B, G2B}, L8B → {L′8B, L3B}
where the refined large models (G′9B, L′8B) are subsequently utilized for synthetic data145

generation. We select k = 20 after empirical evaluation of the teacher models’ output146

distributions revealed that the probability mass beyond the 20 highest-scoring tokens is147

negligible. We perform the experiments only upto three iterations (n = 3).148

4.3 Training data149

Models are fine-tuned using the BPCC seed corpus, a parallel Indic-to-English dataset (Gala150

et al., 2023). Consistent with established practices in low-resource translation re-151

search (Kunchukuttan et al., 2023), we randomly sample 20,000 sentence pairs for training152

and distillation. We use a fixed prompt format for all of the language and model pair,153

discussed in Appendix A. .154

4.4 Synthetic data generation155

Following each distillation iteration, the most recent large model generates synthetic English156

translations for the original 20,000 source sentences. This synthetic data generation process157

is repeated for three complete cycles to enable progressive model refinement.158

4.5 Evaluation159

Model performance is assessed using the IN22 Gen corpus (Gala et al., 2023), with transla-160

tion quality quantified through chrF scores (Popović, 2015). This metric provides standard-161

ized measurement of n-gram translation accuracy, aligning with current best practices in162

machine translation evaluation.163

5 Results164

Zero-Shot Setting We observe a consistent performance trend across iterations of distilla-165

tion. The first iteration results in a substantial performance increase. The second and third166

iteration usually has similar values with the first iteration, but we notice a small increase of167

1-2% of chrF with each iteration. This pattern holds true for both iterative distillation and soft168

distribution-preserving distillation, with no significant differences observed between the two.169

However there are some notable results –170

• For the Gemma 2B model with Bengali and the LLaMA 3B model with Malayalam,171

iterative distillation outperforms soft distribution-preserving distillation.172

• In contrast, for the LLaMA 8B model with Hindi and the LLaMA 3B model with173

Bengali, soft distribution-preserving distillation demonstrates superior performance174

compared to iterative distillation.175
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Lang (Shot) Gemma9B Llama8B Llama3B Gemma2B
Base DD1 SD1 DD2 SD2 DD3 SD3 Base DD1 SD1 DD2 SD2 DD3 SD3 Base DD1 SD1 DD2 SD2 DD3 SD3 Base DD1 SD1 DD2 SD2 DD3 SD3

BEN (0-s) 41.4 61.1 60.9 61.4 60.5 61.0 61.4 29.2 44.9 42.1 48.3 46.2 38.9 38.9 24.2 46.0 49.4 34.3 52.3 26.1 45.2 24.6 50.9 40.1 50.0 43.0 49.9 49.1
HIN (0-s) 47.9 64.4 64.7 64.5 64.7 60.4 64.4 33.6 29.8 40.3 50.3 54.1 37.3 50.8 14.5 52.7 53.1 55.0 54.4 55.1 53.9 28.8 58.4 58.3 58.1 58.4 57.8 56.8
MAL (0-s) 39.9 60.2 60.4 60.7 60.7 61.1 61.0 22.8 42.6 40.6 46.2 44.5 17.8 38.0 2.9 38.9 33.5 37.5 29.4 27.1 25.3 23.8 48.3 48.2 48.2 49.0 47.4 48.5
BEN (1-s) 42.7 60.8 60.1 60.5 64.8 60.6 60.9 26.6 39.6 32.0 42.0 38.3 30.0 38.7 18.4 39.3 37.5 28.0 39.3 16.4 37.5 28.7 50.3 58.3 50.1 48.8 49.4 45.4
HIN (1-s) 49.2 64.2 64.5 64.6 64.9 59.0 63.3 36.0 26.8 39.6 55.5 39.4 27.6 40.7 17.8 52.8 51.9 55.6 54.8 55.5 54.3 33.4 58.7 56.9 58.4 58.1 57.2 56.8
MAL (1-s) 38.8 60.0 57.9 60.2 59.1 60.4 58.4 8.5 17.6 21.2 26.4 23.5 15.0 22.3 5.0 27.4 18.2 24.5 17.5 18.7 17.4 27.8 46.6 47.1 47.1 47.4 46.9 47.0
BEN (4-s) 24.2 53.1 49.3 52.4 49.3 52.8 45.0 13.5 16.7 16.7 16.5 15.1 18.3 17.0 13.4 27.0 17.2 12.8 16.6 13.4 13.5 19.0 27.7 23.8 29.0 28.6 34.9 32.8
HIN (4-s) 44.6 63.8 63.7 63.7 64.3 57.7 64.1 24.1 18.9 29.3 51.1 33.4 21.0 27.3 14.5 36.3 34.5 42.7 44.4 42.6 42.8 31.2 54.1 55.5 53.8 51.2 54.9 53.3
MAL (4-s) 14.5 37.0 18.2 37.2 32.9 37.8 48.1 14.0 17.4 17.4 17.4 17.4 17.4 17.4 14.0 17.4 17.3 17.3 17.2 17.4 17.3 13.4 25.4 23.0 25.8 21.4 25.3 21.0

Table 1: chrF scores across languages and shot settings for all models and iterations. Each
cell indicates performance on a (language, shot) pair.

One-Shot Setting The one-shot setting yields the best overall performance, with the176

highest chrF scores observed exclusively in this configuration. The performance trend177

across iterations closely resembles that of the zero-shot setting. We observe some crossover178

between the two distillation methods, where one approach outperforms the other depending179

on the iteration count. Notable observations include:180

• For the LLaMA 3B model on the Malayalam dataset, iterative distillation surpasses181

soft distribution-preserving distillation in performance.182

• Conversely, for the LLaMA 3B model on the Bengali dataset, soft distribution-183

preserving distillation outperforms iterative distillation.184

Figure 2: chrF scores over distillation cy-
cles for LLaMA 8B → 3B using Iterative and
Softmax-Preserved Distillation under a zero-
shot Hindi setting. Marginal gains observed
across iterations.

Four-Shot Setting Performance drops slightly185

in the four-shot setting, though iteration-wise186

trends remain similar. Both iterative and soft187

distribution-preserving distillation show grad-188

ual improvement. The decline is mainly due to189

reduced contextual clarity, as four-shot prompts190

are approximately 60% longer than one-shot,191

putting more strain on the model’s context win-192

dow. Maintaining coherence across multiple193

examples becomes more difficult, especially in194

linguistically complex languages where context195

dilution impacts grammatical richness. These196

findings emphasize the tradeoff between shot197

count and context efficiency in multilingual dis-198

tillation with limited model capacity. We also199

observed notable error propagation across distil-200

lation iterations, where inaccuracies compound201

over time. Appendix C covers this in detail.202

6 Conclusion203

This work introduces CycleDistill, a structured and data-efficient framework for improving204

translation from low-resource languages to English. Using iterative synthetic data genera-205

tion and token-level soft distillation, it enhances performance without needing large-scale206

parallel corpora. Experiments on several low-resource Indian languages show consistent207

chrF score gains, validating its effectiveness across linguistic and architectural variations.208

Combining iterative self-distillation with soft distribution-based learning yields comple-209

mentary benefits, though gains taper after the second iteration. Translation quality remains210

sensitive to error accumulation, especially in morphologically rich languages and low-211

supervision settings. Still, CycleDistill supports model refinement and compression, offering212

a scalable solution for low-resource MT and advancing multilingual NLP.213
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A Prompt Used287

The prompt utilized for the translation task described in Section 3.4 is shown in figure 3.288

In 1-shot and 4-shot settings, example translation pairs are inserted into the middle section289

of the prompt prior to the final instruction.290

B Visualization of Effects of our Methods over Shots291

This appendix provides a set of visualizations that illustrate the impact of the proposed292

methods under varying shot settings. Figures 3-5 demonstrate how performance characteris-293

tics evolve as the number of shots increases, thereby offering a more detailed understanding294

of the underlying behavior and effectiveness of our approach.295

C Error Propagation Analysis in the Iterative Methodology296

The cumulative error at distillation iteration t, denoted as ϵt, can be expressed through the297

following recursive formulation:298

ϵt = ϵt−1 + γ(δsynth + δKL)

where:299

• ϵt: Accumulated error at distillation iteration t300
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Figure 3: Example of the general prompt used for the translation task.

• γ: Learning rate coefficient that amplifies subsequent error terms301

• δsynth: Error component arising from synthetic data generation and imperfect distri-302

bution alignment303

• δKL: Error component resulting from approximation inaccuracies in KL divergence304

minimization305

C.1 Error source analysis306

C.1.1 Synthetic data generation error307

This loss function incentivizes the generator to produce exemplars where the student308

model’s output exhibits maximal divergence from the teacher model’s output, thereby309

concentrating the training process on challenging instances. The objective extends beyond310

mere generation of verisimilar samples to the production of samples that effectively enhance311

student model performance.312

The generator objective function is defined as:313

LG = Ez∼p(z)[∥T(G(z))− S(G(z))∥2]

This formulation introduces error through:314

• Architectural constraints: The generator function G(z) cannot achieve perfect315

replication of the true data distribution preal(x)316

• Student capacity limitations: The student model S exhibits insufficient representa-317

tional capacity to precisely emulate the teacher model T’s outputs318

C.1.2 Weight initialization error319

The initialization discrepancy is quantified as:320

It = ∥θstudent
0 − θteacher

0 ∥
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This discrepancy propagates through the gradient update mechanism:321

θt+1 = θt − η∇θL(S , θt)

where the parameter η governs the rate of error accumulation.322

D Future Work323

While CycleDistill demonstrates promising performance in the context of low-resource to324

English translation using synthetic parallel corpora and few-shot guidance from LLMs, sev-325

eral directions remain unexplored and merit further investigation to evaluate the robustness,326

generalizability, and scalability of the proposed framework.327

First, we plan to extend our framework to include a highly under-documented and lin-328

guistically distant language, where even minimal digital resources are sparse or entirely329

unavailable. This would serve as a stress test of CycleDistill’s adaptability in extreme330

low-resource regimes, and would provide insights into the method’s resilience to noise,331

orthographic variability, and lack of standardized tokenization procedures.332

Second, we intend to investigate the reverse translation direction (i.e., English to low-333

resource language) for at least one or two selected languages. This is particularly significant334

given the asymmetry in language modeling capabilities of LLMs, which may dispropor-335

tionately favor high-resource language outputs. This line of inquiry will assess whether336

CycleDistill maintains its efficacy when tasked with generating fluent and culturally coher-337

ent translations into low-resource languages.338

Additionally, we propose to conduct targeted ablation studies to systematically examine the339

stability and sensitivity of CycleDistill across different components, including the choice of340

synthetic data generation temperature, number of iterations, and the best iteration to stop341

at. These experiments will help disentangle the relative contributions of each element and342

offer a clearer understanding of the process dynamics.343

Together, these directions aim to solidify the empirical foundations of CycleDistill and344

evaluate its broader applicability across varied linguistic settings.345

E Limitations346

Despite the effectiveness of CycleDistill in enhancing translation performance through347

iterative and soft distribution-preserving distillation, the approach exhibits several notable348

limitations. Firstly, empirical results demonstrate diminishing marginal improvements349

beyond the second iteration, with performance frequently plateauing or deteriorating350

by the third cycle. Secondly, the method relies on synthetic data generated by teacher351

models, which may introduce compounding translation errors over successive iterations352

due to self-reinforcement effects, which we have discussed in Appendix C. Thirdly, in few-353

shot scenarios, particularly involving morphologically rich languages such as Malayalam354

and Bengali, the system suffers significant performance degradation, up to 30 chrF points,355

largely attributable to increased prompt lengths and consequent loss of contextual coherence.356

Finally, the current evaluation is limited to three Indic languages and specific model families357

(Gemma and LLaMA), thereby restricting the generalizability of the findings to other358

language pairs and model architectures.359
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Figure 4: Comparison of the methods at 0-shot setting

Figure 5: Comparison of the methods at 1-shot setting
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Figure 6: Comparison of the methods at 4-shot setting
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