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Abstract

Multilingual language models are trained on a fixed set of languages. To1

support new languages, the models need to be re-trained from scratch. This2

is an expensive endeavor and is often infeasible, as model developers tend3

not to release their pre-training data. Naive approaches like continued4

pretraining suffer from catastrophic forgetting but mitigation strategies5

like experience replay cannot be applied due to lack of original pretraining6

data. In this work, we investigate the problem of continually adding new7

languages to a multilingual model assuming access to pretraining data8

in only the target languages. We propose Layer-selective LoRA (LAYRA),9

which adds Low-Rank Adapters (LoRA) to selected initial and final layers10

while keeping the rest of the model frozen. LAYRA builds on two insights:11

(1) LoRA reduces forgetting, and (2) multilingual models encode inputs in12

the source language in the initial layers, reason in English in intermediate13

layers, and translate back to the source language in final layers. Our experi-14

ments with adding multiple combinations of Galician, Swahili and Urdu to15

Llama 3.1 reveal the effectiveness of our approach across diverse multilin-16

gual tasks. We also demonstrate that using model arithmetic, the adapted17

models can be equipped with instruction following abilities without access18

to any instruction tuning data in the target languages.19

1 Introduction20

Although several recently released language models (LMs) are advertised as multilingual21

(Grattafiori et al., 2024; Faysse et al., 2024; Gemma, 2025), they only support a handful of22

predetermined high-resource languages. As resources for new languages become available,23

continually supporting them in such models is not trivial. Retraining them from scratch24

is often prohibitively expensive, so practitioners typically adopt an incremental continued25

pretraining (CPT) strategy to incorporate new languages (Csaki et al., 2023). However, it26

often results in catastrophic forgetting of previously supported languages (Cahyawijaya27

et al., 2023; Chalkidis et al., 2021; Vu et al., 2022).28

The most common solution to avoid forgetting is experience replay—reintroducing data29

in previously supported languages during CPT (Winata et al., 2023; Wang et al., 2024b).30

Unfortunately, most recent model releases are not accompanied by their pretraining data31

(Touvron et al., 2023; Jiang et al., 2023; Gemma, 2025; Bai et al., 2023). Even if the data were32

available or approximated using public sources, as the number of supported languages in33

an LM grows, replaying data in all of them can also become computationally infeasible.34

Recent works proposing alternative approaches to mitigate forgetting have also been shown35

to work well only in conjunction with replay (Winata et al., 2023; Alexandrov et al., 2024;36

Chen et al., 2023; Aggarwal et al., 2024).37

We propose a lightweight replay-free continued pretraining method called LAYRA (Layer-38

selective LoRA; see Figure 1 and §2). We add Low-Rank Adapter modules (Biderman39

et al., 2024a) to selected transformer layers in an LM during training while keeping other40

layers frozen. Our method takes inspiration from two recent works. Biderman et al.41

(2024a) show that LoRA based training can reduce forgetting but also reduce learning. To42

improve learning, we apply LoRA only to subset of the model layers inspired by Zhao43
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et al. (2024); Wendler et al. (2024) which showed evidence that multilingual LMs process an44

input sequence in three stages. Using logit lens based analysis (Nostalgebraist, 2020), they45

demonstrated that the earliest layers of LMs process the sequence in the language in which46

it is written, the middle layers process the sequence in English (the most dominant language47

in the pretraining corpora) and the final layers translate back and generate a response in the48

input language. By performing targeted updates to only the layers responsible for handling49

non-English text, we show that we improve learning while further reducing forgetting. We50

further show that by combining LAYRA with model merging methods, we can sequentially51

continue to add new languages to an LM. Finally, beyond adapting to new languages, we52

show that we can enable instruction following in the adapted models using instruction53

residuals extracted from already instruction-tuned models.54

We validate our method by adding different combinations of three typologically different55

languages with limited pretraining resources (Galician, Urdu, Swahili) to Llama 3.1 (§3).56

We choose these languages to understand the impact of writing script and relatedness of57

target languages with the original model on both learning and forgetting. Our results (§4)58

show that LAYRA surpasses baselines in new language acquisition while outperforming or59

matching them in preventing forgetting. Our analysis reveals that a target language irre-60

spective of its relatedness to the originally supported languages can be adapted successfully61

as long as its writing script is represented by the model.62

2 The Continual Learning Problem63

2.1 Problem Setup64

Suppose we have a pretrained autoregressive LM θN that supports N languages (where65

N > 1). Given pretraining data in n new languages, {L1, L2, . . . , Ln}, our goal is to create a66

model θN+n that supports all N + n languages. Crucially, θN+n should retain its performance67

in the original N languages (stability) while acquiring competence in the new n languages68

(plasticity). We also consider a generalized continual learning setup where given θN+n, we69

update it to include n′ more languages, thus creating θN+n+n′ . In principle, this process can70

go on indefinitely as resources for new languages emerge reflecting common practice in71

language modeling and machine learning, where new training data arrive incrementally72

(BLOOM (Leong et al., 2022), Wura (Oladipo et al., 2023), or FineWeb 2 (Penedo et al., 2024)).73

Furthermore, we assume no access to the pretraining data in the original N languages that74

led to the creation of θN . This also reflects a new reality in open-weights release of language75

models where the pretraining data or its constitution is often not publicly shared by the76

organizations building them (Dubey et al., 2024; Bai et al., 2023; Abdin et al., 2024).77

Supporting instruction following in new languages To create models that can respond to78

user queries, pretrained LMs typically go through an instruction tuning phase using curated79

labeled datasets (Ouyang et al., 2022; Chung et al., 2024; Lambert et al., 2024). However,80

instruction-tuning datasets remain scarce or unavailable for most non-English languages.81

Hence, we explore data-free methods to add instruction following abilities to updated82

models θN+n, assuming access to an instruction tuned model that supports the original N83

languages, θit
N .84

2.2 Method85

We summarize our methodology in Figure 1. Our goal is to add new languages to θN86

without causing the model to forget the previously learned languages. The simplest and87

most naive approach to do this is to continue pretraining (CPT) θN with new data using88

a language modeling objective (such as next token prediction). However, it has been89

widely observed (and confirmed in our experiments) that CPT leads to severe catastrophic90

forgetting, causing large drops in performance on previously supported languages (Csaki91

et al., 2023). Experience replay, reintroducing past data during CPT, has been proposed92

as a viable approach to address this issue but it requires access to pretraining data of θN93

which is not available to us. While multilingual pretraining datasets in many languages94
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Figure 1: Problem setup for continually adding new languages and instruction tuning to a
model. Left: Layer-selective LoRA which performs LoRA updates to only selected initial
and final transformer layers. Middle: Sequential continual learning techniques to enable
multiple stages of adaptation. Right: Enable instruction following in the adapted model
without instruction data using model arithmetic.

have recently been open-sourced, recent state-of-the-art multilingual LLMs are trained with95

such a large number of languages that it can become extremely computationally expensive96

to perform replay. For example, BloomZ (Muennighoff et al., 2022), Aya 23 (Aryabumi97

et al., 2024), and Gemma 3 (Gemma, 2025) were trained on 23, 46 and over 140 languages98

respectively. This number is likely to grow over time.99

Instead of experience replay, in this work, we explore continued pretraining with parameter100

efficient approaches, such as LoRA (Hu et al., 2022), which have been shown in prior work101

to “learn less and forget less” (Biderman et al., 2024a), thus finding a better balance between102

learning new tasks and retaining past knowledge. Our experiments on adding languages103

also reveal similar findings. To further minimize forgetting and improve learning, we104

propose the following improvements to the training procedure updating only a subset of105

the layers during CPT.106

Layer-selective Continual Learning Recent work has indicated that multilingual LMs107

with layers {Tl}L
l=1 process sequences in three main stages (Zhao et al., 2024; Wendler et al.,108

2024).109

1. The earliest layers (T∼1) encode the input in its source language.110

2. The middle layers (T∼L/2) handle the model’s internal “reasoning language” (often111

English in models such as Llama series of models).112

3. The final layers (T∼L) convert the representation back into the target language113

during generation.114

Based on this observation, we hypothesize that training only the layers responsible for115

handling non-English text and freezing the English-specific layers should be sufficient to116

support new languages to the model, preserving its core reasoning abilities. We combine117

this layer-selective training method with parameter-efficient updates to propose our final118

training approach, which we call Layer-selective LoRA (LAYRA) which finds the best119

balance between learning and forgetting in our extensive experiments. 1
120

Given n new languages, we first continue pretraining θN to obtain an adapted model ϕN+n.121

We then obtain θN+n as,122

θN+n = θN + λ(ϕN+n − θN) (1)

1A variation of this method as evaluated by Remy et al. (2024) showed its validity in faster adap-
tation to low-resource languages. However, their method still suffered from catastrophic forgetting
which we aim to address in this work.
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Here λ is a hyperparameter that controls the weights of added language vector that is123

learned during training. Similar to its usage in previous works (Morrison et al., 2024; Wang124

et al., 2024a), the addition here is a vector operation and this helps to obtain the right balance125

of language vectors to add when working with multiple language vectors. The language126

vector in this equation could also be swapped for a task vector as later seen in Equation 4127

Sequentially adding new languages over multiple stages To support multiple stages of128

continual learning, where n languages are added in the first stage, and n′ languages are129

added in the second stage (and so on), we explore the following two methods.130

In the first setup, which we call LAYRA-SERIES, we iteratively apply LAYRA by first training131

θN to create θN+n. We then continue training θN+n on n′ newer languages again following132

LAYRA creating133

θseries
N+n+n′ = θN+n + λ′(ϕN+n+n′ − θN+n′). (2)

Here, λ′ is another hyperparameter tuned separately from λ. This process can be continued134

indefinitely to add more languages.135

In the second setup, which we call LAYRA-MERGE, we first create θN+n′ separately without136

relying on θN+n by applying LAYRA with the n′ languages on θN . We then merge the137

weights of these specialized models, θN+n and θN+n′ , to yield a single model θN+n+n′ .138

Concretely,139

θ
merge
N+n+n′ = µθN+n + (1 − µ)θN+n′ (3)

This approach aims to combine gains for each set of training without introducing additional140

forgetting issues from a previous LAYRA stage as in series. In practice, a practitioner may141

use different combinations of SERIES and MERGE depending on the languages being added142

to the underlying model.143

Adding Instruction Following Capabilities So far, we describe an approach to add new144

languages to a pretrained model using raw text available in target languages. Recent open-145

weights models (Dubey et al., 2024; Bai et al., 2023; Abdin et al., 2024; OLMo et al., 2024) all146

follow a pattern of releasing both a pretrained (base) and an instruction-tuned model (θit
N).147

To add instruction following abilities in the adapted model θN+n without any labeled data148

in the n new languages, we compute a language vector as the difference between θN+n and149

θN and apply it to θit
N as,150

θit
N+n = γ(θN+n − θN) + θit

N (4)

By doing so, we inherit the instruction-following capabilities learned by θit
N while supporting151

newly added languages to create LAYRA-INSTRUCT.2 The scaling factor γ can be tuned152

to balance instruction performance and new-language retention. Given instruction-tuning153

datasets in the target language, this model can further be improved but we do not assume154

any such access in this work.155

3 Experimental Setup156

3.1 Languages, Datasets, and Model157

We use Llama 3.1 8B (Grattafiori et al., 2024) for our experiments which supports N = 8158

languages. Six of them use Latin script (English, German, French, Italian, Portuguese, and159

Spanish), while two use non-Latin scripts (Hindi in Devanagari and Thai in Thai script).160

2While more sophisticated methods of model merging have recently been developed such as TIES
(Yadav et al., 2023) and DARE (Yu et al., 2024), our initial experiments did not show improvements
with them over task vectors.
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New languages To test the impact of writing script and their relatedness to existing161

languages in the model, we experimented with adding the following languages:162

• Galician: a mid-resource Romance language (Latin script) spoken in northwestern163

Spain. Given its similarities to Portuguese and Spanish (both of which exist in the164

original model), Galician is well suited for leveraging prior multilingual knowledge.165

• Swahili: a low-resource Bantu language predominantly spoken in East Africa by166

roughly 100 million speakers. It is not related to any of the languages in Llama 3.1167

but is written in Latin script, which is well represented in the model.168

• Urdu: a low-resource Indo-Aryan language (Perso-Arabic script). Although Urdu169

shares substantial linguistic commonalities with Hindi (which is supported by the170

base model), its script differs from Hindi.171

This diverse selection of languages provides a robust test of how effectively the model can172

learn distinct scripts and linguistic structures. For each of the three languages, we create173

our pretraining datasets using FineWeb 2 (Penedo et al., 2024). We use all available data for174

Swahili which was ∼1.2B tokens. For the other two languages, we subsampled the corpus175

to contain the same number of tokens to control for the impact of dataset size.176

We conduct two sets of experiments: (1) a single-stage continual learning setup with n = 1177

where we add only one of the three languages at a time to the base model, and, (2) a two-178

stage setup with n = 1 and n′ = 1, where we first add one of the languages to the pretrained179

model, and incorporate a second language later on.180

3.2 LAYRA Hyperparameters181

For our single-stage experiments (Equation 1), we set λ = 1 which adds the entire language182

vector that is obtained after CPT. This is analogous to a straightforward LoRA CPT (with183

selected layers). In LAYRA-SERIES where we iteratively add more languages following184

Equation 2, we empirically determine λ′ = 0.5 to perform the best.3 In our second setup for185

adding multiple languages via merging, LAYRA-MERGE, we set µ = 0.5 which is analogous186

to averaging all the adapted models from CPT. To add instruction following abilities to the187

adapted model as in Equation 4, we use a value of γ = 0.7 which adds part of the language188

vector to Llama 3.1 Instruct. We determine the value of γ with a small scale experiment189

with varying values. For the the adapters, we use a rank (r) of 8 and α as 16. We use LoRA190

dropout of 0.05. We only use this setup as results from Biderman et al. (2024a) shows that191

this rank and alpha results to the least forgetting during continual pretraining of an LLM.192

For all LAYRA experiments, we apply LoRA to the earliest 10 and the final 2 layers. In193

addition, we also finetune the embedding layer and the LM head. We provide analysis and194

a blation studies that provide the reasoning for choosing these hyperparameters in §5. All195

other training hyperparameters can be found in the Appendix A.4 Table 19.196

3.3 Baselines197

We compare LAYRA with the following methods.198

• Full CPT In this baseline, we continue pretraining all the base model parameters.199

• LoRA CPT In this baseline, we continue pretraining the base model using low-rank200

adapters (LoRA) applied at all layers following (Biderman et al., 2024a).201

• Layer-Selective Full CPT In this baseline, we fully train the first and the last202

transformer layer of the base model along with the embedding layer and the LM203

head (these layers were empirically determined to give the best performance). This204

baseline also serves as an ablation of LAYRA with the adapters removed.205

3While we perform experiments with only two stages, future stages may require an even smaller
multiplier
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3.4 Evaluation206

We evaluate the adapted pretrained models on XNLI (Natural Language Inference; Conneau207

et al., 2018), PAWS-X (Paraphrasing; Yang et al., 2019), XCOPA (Commonsense Reasoning;208

Ponti et al., 2020), and XStoryCloze (Commonsense Reasoning; Lin et al., 2021). We209

evaluate the instruction adapted models on XNLI, MGSM (Math; Shi et al., 2022), and210

MMLU-Lite (MCQs; Singh et al., 2024). For MGSM and MMLU, we generate the answer211

by greedily decoding from the model with a temperature of 0.4 which we determine with212

earlier experiments we do not report. We evaluate the rest as classification tasks by choosing213

the labels with the the highest probability. We use the LM harness evaluation framework214

(Biderman et al., 2024b) our evaluations. We use 0-shot evaluation for all tasks except for215

MGSM for which we use a 3-shot setup following prior work (Group et al., 2024). Not all216

languages with which we experiment have datasets available for all tasks. For languages for217

which datasets are not available, we translate the English subset of the task to the missing218

language using Google Machine Translate (see Table 20 in the Appendix A.4 for language219

that required translations). We perform qualitative analysis to ensure that the translations220

are accurate. For all tasks, we report accuracy. For each task, we track retention measured221

by a minimal drop in performance in the originally supported languages and gain which222

is measured by improvement in performance in the newly added language(s). An ideal223

solution leads to the highest gains while maximizing retention.224

4 Results225

4.1 Adding One Language to the Pretrained Model226

We provide results for one-stage continual learning by adding one language at time in Table 1.227

As expected, full CPT consistently exhibits the highest level of catastrophic forgetting across228

all languages and tasks—regardless of script, resource availability, or linguistic similarity229

of the target language to previously supported languages. Layer-Selective full CPT, by230

freezing most of the model layers and finetuning only the top and bottom layers improves231

the learning-forgetting tradeoff. However, significant forgetting still persists. LoRA CPT232

with its lightweight parameter updates closes the gap even further. Our proposed approach233

LayRA, considerably outperforms LoRA in terms of forgetting while being competitive and234

oftentimes exceeding LoRA in terms of acquisition across all tasks and target languages. We235

provide detailed results across multiple tasks and additional languages in Tables 3 4 5 and236

6, which are included in the Appendix (A.1. In these results, we observe a 2 point margin237

over the baselines with our Urdu-trained model on over 5 languages for XNLI. We also see238

a similar trend with 2 languages with our Galicain-trained model. With LAYRA, we see the239

least amount of forgetting in English across all tasks, which is the anchor language Llama240

3.1 8B. This aligns with our hypothesis that freezing the model’s middle transformer layers241

preserves the core capabilities encoded in the anchor language.242

Impact of language relatedness and scripts Using LAYRA, the Galician-trained model243

exhibits the strongest retention-gain tradeoff. We hypothesize that this result is due to244

positive transfer from Spanish and Portuguese (which are both supported by the original245

model). In fact, this model improves English performance across multiple tasks, highlighting246

that cross-lingual transfer can happen in both directions with our proposed approach.247

Swahili, while unrelated to any of the languages in the original model, also responds well to248

our training strategy with a substantial performance gain with a good amount of retention249

(albeit slightly worse than Galician). We speculate that this result is due to Latin script being250

well supported in the original model as well as the heavy usage of English loanwords in251

Swahili (Martin et al., 2021). On the other hand, models trained with Urdu, which is very252

closely related to Hindi, achieve the poorest overall performance, both in terms of gain as253

well as retention. This is due to Urdu’s writing script not being well represented in the base254

model’s tokenizer, leading to overfragmentation and poor adaptation. Although prior work255

has sought to address such issues with vocabulary expansion techniques (Kim et al., 2024),256

the resulting change in the number of model parameters hinders the use of model merging257

or parameter-efficient techniques to reduce catastrophic forgetting. Tokenizer-free models258
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XNLI evaluation for models trained on Swa/Urd/Glg

Model eng spa hin swa urd glg Avg

Pretrained 54.90 51.33 48.96 39.24 36.43 47.57 47.55

Full 52.93/49.88/50.88 44.42/34.86/47.31 34.18/35.82/33.90 45.46/34.26/32.61 33.45/39.68/37.43 37.19/34.26/50.93 40.95/37.57/41.21
layer-sel. 55.06/54.70/53.01 45.50/36.27/47.11 41.93/39.08/37.83 46.71/35.06/36.14 33.45/42.49/34.50 41.94/37.09/53.82 43.91/39.34/43.40
LoRA 55.90/55.78/54.34 48.84/42.89/49.32 45.30/39.12/45.70 47.71/36.10/35.90 36.55/42.65/36.75 44.08/48.55/54.02 46.82/44.82/46.49
LAYRA 54.22/57.11/55.81 47.43/43.82/50.64 46.83/42.01/48.07 45.34/36.83/34.66 34.98/40.96/37.55 45.48/47.81/54.02 46.64/45.58/47.14

PAWS-X evaluation for models trained on Swa/Urd/Glg

Model eng spa hin swa urd glg Avg

Pretrained 67.45 65.30 64.45 61.00 54.25 63.55 63.17

Full 65.25/66.60/61.70 61.50/54.90/62.65 61.50/52.95/54.15 63.00/52.95/53.35 55.05/46.85/47.50 50.80/47.15/62.85 59.36/54.11/57.37
layer-sel. 64.65/66.95/58.90 60.60/58.40/63.95 59.00/54.35/56.05 60.60/49.65/51.00 55.05/52.20/49.10 55.70/53.60/67.80 59.82/56.10/58.57
LoRA 68.75/70.45/67.15 64.00/61.10/64.60 63.35/64.30/62.85 61.70/48.00/46.15 59.90/49.35/50.45 56.70/59.10/66.60 62.97/59.58/60.89
LAYRA 68.95/68.45/67.15 63.85/60.35/64.30 64.20/63.70/63.30 61.20/53.50/50.35 59.75/54.85/49.45 59.65/60.80/65.25 63.25/60.79/61.03

XCOPA evaluation for models trained on Swa/Urd/Glg

Model eng spa tha swa urd glg Avg

Pretrained 87.00 81.40 57.60 55.00 58.80 57.60 67.14

Full 72.00/73.00/77.00 57.40/50.20/70.20 55.60/52.40/55.00 66.80/53.60/53.60 53.40/59.60/54.80 53.40/50.80/59.00 58.97/56.09/60.09
layer-sel. 83.00/77.00/80.00 60.20/56.40/76.20 57.60/54.20/56.60 66.00/54.00/53.40 53.20/57.60/57.20 54.00/53.40/58.00 61.00/58.37/62.34
LoRA 88.00/86.00/85.00 70.60/74.80/77.00 56.60/58.00/55.40 66.20/53.60/53.00 53.80/59.40/59.80 56.00/58.00/62.20 64.74/65.57/65.14
LAYRA 87.00/86.00/86.00 69.60/76.80/76.80 57.80/60.60/58.40 64.60/53.40/54.40 56.00/61.00/57.40 52.40/56.00/63.20 64.09/66.26/65.20

XStoryCloze evaluation for models trained on Swa/Urd/Glg

Model eng spa hin swa - glg Avg

Pretrained 78.16 70.75 64.46 55.86 - 64.46 66.74

Full 70.22/69.09 59.03/65.39 47.12/48.91 47.12/48.38 - 64.33/68.56 57.56/60.07
layer-sel. 76.57/75.84 66.05/69.49 55.46/52.61 64.99/49.90 - 54.47/70.42 63.51/63.65
LoRA 76.17/76.77 66.71/69.82 63.40/63.67 57.91/51.42 - 65.12/70.81 65.86/66.50
LAYRA 76.51/76.11 66.51/69.69 63.27/63.20 63.73/50.69 - 57.91/69.89 65.59/65.92

Table 1: Performance of different CPT methods across languages for XNLI, PAWS-X, XSto-
ryClose and XCOPA. See Tables 3, 4, 5 & 6 in the Appendix A.1 for full results with more
languages which we use to compute the average.

may be a viable future direction in addressing this issue (Ahia et al., 2024). Furthermore, we259

observe that non-Latin-scripted languages such as Thai and Hindi also disproportionately260

suffer at retention across all methods highlighting a broader trend of negative transfer261

between languages that do not share scripts. We leave further examination of this trend to262

future work. Due to these observations, we exclude Urdu from further experiments and263

only report results with Galician and Swahili for two-stage continual learning.264

4.2 Sequentially Adding Multiple Languages to the Pretrained Model265

We provide the results for sequential addition of Galician and Swahili, LAYRA-SERIES and266

-MERGE in Table 2. Both of these methods assume that the resources of the languages arrived267

in order and not at the same time. For reference, we also include results for CPT assuming268

datasets for both languages were indeed available at the same time (referred to as PARALLEL).269

Unsurprisingly, PARALLEL produced the highest overall gain-retention trade-off, indicating270

the effectiveness of single-stage adaptation with multiple languages (n = 2). This method271

serves as the upper bound for the multi-stage learning approaches. With LAYRA-SERIES,272

the gains tend to shift toward the most recently added language with a slight forgetting of273

previously acquired languages. Adding related languages at the second stage (Swahili then274

Galician) leads to better retention. In comparison, LAYRA-MERGE performs much better275

matching or even surpassing PARALLEL, yielding the highest retention of knowledge for276

languages employing Latin scripts.277

4.3 Adding Instruction Tuning to the Adapted Model278

In Figure 2, we observe that adding an instruction residual (as described in Equation 4) can279

enable our adapted models to follow user instructions. XNLI shows clear trends of improve-280

ment of the base instruct model across all three languages in our experiments. With MGSM281

and MMLU the trends are not consistent. For MGSM, we observe an increase in accuracy282

for Swahili and Urdu but a decline in performance for Galician. For MMLU both Urdu and283

Galician show declines. While we do not identify clear reasons for this performance drop,284

we attribute it to tokenization issues with Urdu and previously identified issues with simple285
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Tasks XNLI / PAWS-X

Model deu eng spa fra swa glg Avg

Pretrained 52.05/66.20 54.90/67.45 51.33/65.30 50.12/64.45 39.24/61.00 47.57/63.55 48.95/64.66

Parallel 50.00/66.25 53.53/66.05 50.32/64.65 45.94/62.25 43.73/58.05 56.08/67.35 49.11/64.10

Series (Glg→Swa) 48.88/65.10 54.74/66.80 50.96/62.90 48.63/63.50 43.86/53.75 52.01/55.65 48.98/61.28
Series (Swa→Glg) 51.81/64.10 56.06/67.35 51.24/64.55 48.11/65.45 42.97/47.50 54.82/64.20 49.51/62.19
Merging 51.00/67.30 54.50/67.45 51.81/65.30 49.92/64.45 43.57/61.00 53.98/63.55 49.00/64.66

Tasks XStoryCloze / XCOPA

Model eng spa hin/tha - swa glg Avg

Pretrained 78.16/87.00 70.75/81.40 64.46/57.60 - 55.86/55.00 64.46/57.60 66.74/68.53

Parallel 76.64/86.00 69.16/76.80 63.47/57.00 62.14/63.40 69.95/60.80 68.27/67.87

Series (Glg→Swa) 75.91/81.00 68.23/74.40 64.13/57.40 - 58.44/59.40 67.31/61.80 66.80/66.37
Series (Swa→Glg) 75.45/83.00 68.56/76.40 63.53/57.60 - 57.45/60.00 67.90/59.20 66.58/66.37
Merging 76.64/87.00 69.03/78.80 64.26/58.00 - 56.45/58.20 66.51/60.20 66.58/68.10

Table 2: Performance of different LAYRA setups for adding two languages (Galician +
Swahili) across XNLI, PAWS-X, XStoryCloze and XCOPA. Top for XNLI & PAWS-X. Bottom
for XStoryCloze & XCOPA. See Table 7, 9, 8 & 10 for full results with more languages.

Figure 2: Accuracy of the instruction base model vs the adapted model on XNLI, MGSM
and MMLU

model arithmetic techniques Yadav et al. (2023); Tao et al. (2024). Given a small amount of286

instruction tuning data in the target languages, this gap may be filled. We also measure how287

much our LAYRA-INSTRUCT models forget its previous knowledge by evaluating them on288

the English version of our mentioned tasks in Figure 3 in Appendix A.4. We find that our289

adapted models still achieve high accuracy in English and at times outperforms Llama 3.1290

Instruct.291

5 Ablations292

Varying the number of layers for LAYRA. To choose the optimal number of layers that293

balances the learning-forgetting tradeoff during CPT, we ranged the number of early and294

final transformer layers to be finetuned from 1 to 10 each. We conducted this evaluation295

with Swahili and find that the combination with first 10 and last 2 layers gives us the best296

balance. See Table 11, 12, 13, and 14 in Appendix A.2 for details.297

Language vector Scaling in LAYRA-SERIES. We investigate the impact of changing the298

language vector added during the sequential addition of multiple languages. We continually299

increase λ′ (from Equation 1) for LAYRA-SERIES from 0 to 1 in our Galician and Swahili300

series experiment (Glg→Swa). For all the task we evaluated on, (see Tables 15, 16, 17, 18301

in Appendix A.3), as λ′ tends to 1, we observe more retention of the Swahili and more302
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forgetting of Galician while there is a general drop in accuracy for all the previously learned303

languages.304

6 Related Work305

Language Adaptation There exists extensive prior research to adapt LMs to new languages306

(Ogueji et al., 2021; Alabi et al., 2022; Lu et al., 2024). Most studies have focused on continued307

pretraining of all parameters of the models (Csaki et al., 2023; Alabi et al., 2022), adding308

new parameters such as adapters (Yong et al., 2022), or training a small subset of the model309

parameters (Pfeiffer et al., 2020; Houlsby et al., 2019; Remy et al., 2024). Similarly, our work310

uses adapters (LoRA) and applies them on a subset of model layers. These approaches are311

motivated by training LMs in the target languages(s), not preserving the performance in312

the original ones. They benefit from cross-lingual transfer of encoded knowledge in the313

pretrained models. If the script of the target knowledge is not supported by the pretrained314

models’ tokenizer, Han et al. (2024) show that adapting can be challenging. We demonstrate315

a similar issue with adapting Llama 3.1 to Urdu. A commonly proposed solution to address316

this issue is the expanding of vocabulary before continuing pretraining (Liu et al., 2023;317

Dobler & De Melo, 2023; Mundra et al., 2024). However, these techniques are known to318

exacerbate the forgetting issue (Mundra et al., 2024); model merging techniques to mitigate319

the issue cannot be applied due to different model sizes.320

Mitigating Catastrophic Forgetting Catastrophic forgetting is a well known issue in neural321

models and remains a challenge for modern LMs even for other cases beyond language322

adaptation. Reintroducing original data during adaptation (known as experience replay) is323

a commonly adopted remedy (Rolnick et al., 2019; Csaki et al., 2023; Winata et al., 2023). We324

explore strategies that do not assume access to the original data which is a new reality in325

the case of modern LMs.326

Specifically, we modify LoRA by restricting it to select layers to improve this tradeoff. We327

leave exploration of learning rate schedules along with LAYRA for future work.328

Model Arithmetic As a way to combine multiple models without training, model merging329

has been widely explored in the context of modern LMs (Hammoud et al., 2024; Dziadzio330

et al., 2024; Yang et al., 2024). Since its inception, many advanced merging techniques have331

been explored in recent works (Yadav et al., 2023; Yu et al., 2024; Kim et al., 2023). In our332

early exploration, they did not outperform the simplest arithmetic technique for creating333

task vectors proposed in Ilharco et al. (2022). Hence, we adopt it for sequential adaption334

and for creating our instruction adapted model. Multiple works have also explored model335

arithmetic during continued pretraining or finetuning showing it can match or improve336

the performance of training from scratch. Most related to our work is BAM (Alexandrov337

et al., 2024) which perform full finetuning and merge after every few iterations but they338

used experience replay which is not application to our setup.339

7 Conclusion340

We introduced LAYRA, a layer-selective adapter-based method to continuously add new341

languages to a multilingual LLM. By strategically updating only the first and the last342

few transformer layers, LAYRA effectively preserves knowledge of previously supported343

languages while learning new ones. Our experiments demonstrate that this targeted, low-344

rank adaptation approach not only mitigates catastrophic forgetting but also benefits from345

cross-lingual transfer, and can improve performance on existing languages. In addition, our346

merging strategies enable sequential continual learning, maintaining a favorable balance347

between stability and plasticity. Finally, we showed the potential of LAYRA to integrate348

instruction-following capabilities, even in scenarios where instruction-tuning data for newly349

added languages is not available. We tested our approach only with an 8B model and350

low-resource languages. We leave the exploration of model size and data for future work.351
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A Appendix563

A.1 Full results for LAYRA564

This section provides comprehensive tables detailing the complete set of experimental565

results for LAYRA and baseline methods across all languages and evaluation tasks (XNLI: 3,566

PAWS-X: 4, XCOPA: 5, XStoryCloze: 6). These results offer further evidence supporting the567

conclusions drawn in the main text §4, allowing for deeper comparison and validation of568

performance metrics.

Model deu eng spa fra hin tha swa urd glg Avg

Pretrained 52.05 54.90 51.33 50.12 48.96 47.39 39.24 36.43 47.57 47.55

Swa Full 41.33 52.93 44.42 44.54 34.18 35.02 45.46 33.45 37.19 40.95
Swa layer-sel. 44.78 55.06 45.50 48.27 41.93 37.59 46.71 33.45 41.94 43.91
Swa LoRA 48.63 55.90 48.84 48.31 45.30 46.02 47.71 36.55 44.08 46.82
Swa LAYRA 49.92 54.22 47.43 49.24 46.83 46.35 45.34 34.98 45.48 46.64

Urd Full 37.11 49.88 34.86 35.86 35.82 36.39 34.26 39.68 34.26 37.57
Urd layer-sel. 37.91 54.70 36.27 36.87 39.08 34.58 35.06 42.49 37.09 39.34
Urd LoRA 46.18 55.78 42.89 49.32 39.12 42.77 36.10 42.65 48.55 44.82
Urd LAYRA 48.39 57.11 43.82 50.00 42.01 43.29 36.83 40.96 47.81 45.58

Glg Full 43.17 50.88 47.31 40.84 33.90 33.82 32.61 37.43 50.93 41.21
Glg layer-sel. 47.67 53.01 47.11 43.57 37.83 36.99 36.14 34.50 53.82 43.40
Glg LoRA 51.77 54.34 49.32 45.70 45.70 44.90 35.90 36.75 54.02 46.49
Glg LAYRA 50.84 55.81 50.64 46.22 48.07 46.43 34.66 37.55 54.02 47.14

Table 3: Performance of different CPT methods across languages for XNLI (%)

569

A.2 LAYRA layer selection ablation results570

Here we present results for ablation studies done to find the best layer combinations for571

LAYRA. The tables in this section contains all the languages and task we evaluate our572

models on. The tables are also split up and expanded for easier comprehension.573
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Model deu eng spa fra swa urd glg Avg

Pretrained 66.20 67.45 65.30 64.45 61.00 54.25 63.55 63.17

Swa Full 58.45 65.25 61.50 61.50 63.00 55.05 50.80 59.36
Swa layer-sel. 63.15 64.65 60.60 59.00 60.60 55.05 55.70 59.82
Swa LoRA 66.40 68.75 64.00 63.35 61.70 59.90 56.70 62.97
Swa LAYRA 65.15 68.95 63.85 64.20 61.20 59.75 59.65 63.25

Urd Full 57.35 66.60 54.90 52.95 52.95 46.85 47.15 54.11
Urd layer-sel. 57.55 66.95 58.40 54.35 49.65 52.20 53.60 56.10
Urd LoRA 64.75 70.45 61.10 64.30 48.00 49.35 59.10 59.58
Urd LAYRA 63.90 68.45 60.35 63.70 53.50 54.85 60.80 60.79

Glg Full 59.40 61.70 62.65 54.15 53.35 47.50 62.85 57.37
Glg layer-sel. 63.20 58.90 63.95 56.05 51.00 49.10 67.80 58.57
Glg LoRA 68.40 67.15 64.60 62.85 46.15 50.45 66.60 60.89
Glg LAYRA 67.40 67.15 64.30 63.30 50.35 49.45 65.25 61.03

Table 4: Performance of different CPT methods across languages for PAWS-X

Model eng spa hin swa glg Avg

Pretrained 78.16 70.75 64.46 55.86 64.46 66.74

Swa Full 70.22 59.03 47.12 47.12 64.33 57.56
Swa layer-sel. 76.57 66.05 55.46 64.99 54.47 63.51
Swa LoRA 76.17 66.71 63.40 57.91 65.12 65.86
Swa LAYRA 76.51 66.51 63.27 63.73 57.91 65.59

Glg Full 69.09 65.39 48.91 48.38 68.56 60.07
Glg layer-sel. 75.84 69.49 52.61 49.90 70.42 63.65
Glg LoRA 76.77 69.82 63.67 51.42 70.81 66.50
Glg LAYRA 76.11 69.69 63.20 50.69 69.89 65.92

Table 5: Performance of different CPT methods across languages for XStoryClose (%)

A.3 Changing the language vector in LAYRA-SERIES.574

This appendix shows the sensitivity of the model to the scaling factor λ′ used when sequen-575

tially adding new languages with LAYRA-SERIES. We include detailed tables and analyses576

to illustrate how changing this hyperparameter influences retention of previously acquired577

languages versus performance gains on newly added ones.578

A.4 Other Tables and Figures579

We put all other tables and figure in this section such as hyperparameter 19 table containing580

exhaustive details regarding experimental setups, including training hyperparameters such581

as learning rates, batch sizes, etc. We also add a table to show the languages we translate in582

Table 20 and Figure to show the forgetting rate of LAYRA-INSTRUCT on English (Figure 3).583

584
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Model eng spa ita tha swa urd glg Avg

Pretrained 87.00 81.40 72.60 57.60 55.00 58.80 57.60 67.14

Swa Full 72.00 57.40 54.20 55.60 66.80 53.40 53.40 58.97
Swa layer-sel. 83.00 60.20 53.00 57.60 66.00 53.20 54.00 61.00
Swa LoRA 88.00 70.60 62.00 56.60 66.20 53.80 56.00 64.74
Swa LAYRA 87.00 69.60 61.20 57.80 64.60 56.00 52.40 64.09

Urd Full 73.00 50.20 53.00 52.40 53.60 59.60 50.80 56.09
Urd layer-sel. 77.00 56.40 56.00 54.20 54.00 57.60 53.40 58.37
Urd LoRA 86.00 74.80 69.20 58.00 53.60 59.40 58.00 65.57
Urd LAYRA 86.00 76.80 70.00 60.60 53.40 61.00 56.00 66.26

Glg Full 77.00 70.20 51.00 55.00 53.60 54.80 59.00 60.09
Glg layer-sel. 80.00 76.20 55.00 56.60 53.40 57.20 58.00 62.34
Glg LoRA 85.00 77.00 63.60 55.40 53.00 59.80 62.20 65.14
Glg LAYRA 86.00 76.80 60.20 58.40 54.40 57.40 63.20 65.20

Table 6: Performance of different CPT methods across languages for XCOPA

Model deu eng spa fra hin tha swa glg Avg

Pretrained 52.05 54.90 51.33 50.12 48.96 47.39 39.24 47.57 48.95

Series (Glg→Swa) 48.88 54.74 50.96 48.63 47.95 44.82 43.86 52.01 48.98
Series (Swa→Glg) 51.81 56.06 51.24 48.11 46.87 44.18 42.97 54.82 49.51
Parallel 50.00 53.53 50.32 45.94 48.63 44.66 43.73 56.08 49.11
Merging 51.00 54.50 51.81 49.92 44.86 42.33 43.57 53.98 49.00

Table 7: Performance of different LAYRA setups for adding two languages (Galician +
Swahili) on XNLI

Model eng spa hin swa glg Avg

Pretrained 78.16 70.75 64.46 55.86 64.46 66.74

Series (Glg→Swa) 75.91 68.23 64.13 58.44 67.31 66.80
Series (Swa→Glg) 75.45 68.56 63.53 57.45 67.90 66.58
Parallel 76.64 69.16 63.47 62.14 69.95 68.27
Merging 76.64 69.03 64.26 56.45 66.51 66.58

Table 8: Performance of different LAYRA setups for adding two languages (Galician +
Swahili) on XStoryCloze

Model deu eng spa fra swa glg Avg

Pretrained 66.20 67.45 65.30 64.45 61.00 63.55 64.66

Series (Glg→Swa) 65.10 66.80 62.90 63.50 53.75 55.65 61.28
Series (Swa→Glg) 64.10 67.35 64.55 65.45 47.50 64.20 62.19
Parallel 66.25 66.05 64.65 62.25 58.05 67.35 64.10
Merging 64.05 67.30 64.55 63.50 56.50 65.15 63.51

Table 9: Performance of different LAYRA setups for adding two languages (Galician +
Swahili) on PAWS-X
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Model eng spa ita tha swa glg Avg

Pretrained 87.00 81.40 72.60 57.60 55.00 57.60 68.53

Series (Glg→Swa) 81.00 74.40 64.20 57.40 59.40 61.80 66.37
Series (Swa→Glg) 83.00 76.40 62.00 57.60 60.00 59.20 66.37
Parallel 86.00 76.80 63.20 57.00 63.40 60.80 67.87
Merging 87.00 78.80 66.40 58.00 58.20 60.20 68.10

Table 10: Performance of different LAYRA setups for adding two languages (Galician +
Swahili) on XCOPA

Model deu eng spa fra hin tha swa Avg

Pretrained 52.05 54.90 51.33 50.12 48.96 47.39 39.24 49.14

Swa LoRA 44.78 55.06 45.50 48.27 41.93 37.59 45.46 45.51
Swa LAYRA (1,10) 49.24 53.98 46.22 48.47 44.58 43.78 47.39 47.67
Swa LAYRA (2,10) 49.92 55.42 46.63 50.64 44.98 43.94 46.39 48.27
Swa LAYRA (6,10) 50.04 55.70 47.51 48.31 45.42 45.82 46.47 48.47
Swa LAYRA (10,10) 49.68 54.98 46.67 48.84 44.02 46.39 47.15 48.25
Swa LAYRA (10,6) 50.36 54.74 47.15 48.47 46.91 46.83 46.83 48.76
Swa LAYRA (10,2) 49.92 54.22 47.43 49.24 46.83 46.35 45.34 48.48
Swa LAYRA (10,1) 49.04 54.82 48.92 48.55 45.90 45.06 46.99 48.47

Table 11: Ablation on LAYRA Configurations for Swahili XNLI

Model deu eng spa fra swa Avg

Pretrained 66.20 67.45 65.30 64.45 61.00 64.88

Swa LoRA 66.40 68.75 64.00 63.35 61.70 64.80
Swa LAYRA (1,10) 65.40 69.40 61.45 64.40 64.40 65.01
Swa LAYRA (2,10) 65.00 66.70 62.60 62.75 63.00 64.01
Swa LAYRA (6,10) 65.25 69.70 64.50 62.30 62.40 64.83
Swa LAYRA (10,10) 66.40 68.65 63.45 63.00 62.50 64.80
Swa LAYRA (10,6) 65.10 69.70 65.35 63.40 60.45 64.80
Swa LAYRA (10,2) 65.15 68.95 63.85 64.20 61.20 64.67
Swa LAYRA (10,1) 66.45 69.45 64.15 64.20 63.30 65.51

Table 12: Ablation on LAYRA Configurations for Swahili PAWS-X

Model eng spa ita tha swa Avg

Pretrained 87.00 81.40 72.60 57.60 55.00 70.72

Swa LoRA 88.00 70.60 62.00 56.60 66.20 68.68
Swa LAYRA (1,10) 86.00 68.00 56.40 57.80 63.60 66.36
Swa LAYRA (2,10) 85.00 69.60 59.60 57.20 64.60 67.20
Swa LAYRA (6,10) 88.00 70.00 60.80 57.20 65.00 68.20
Swa LAYRA (10,10) 86.00 70.40 58.00 56.60 65.40 67.28
Swa LAYRA (10,6) 88.00 69.80 59.60 58.60 66.00 68.40
Swa LAYRA (10,2) 87.00 69.60 61.20 57.80 64.60 68.04
Swa LAYRA (10,1) 85.00 69.40 59.00 56.40 62.80 66.52

Table 13: Ablation on LAYRA Configurations for Swahili XCOPA
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Model eng spa hin swa Avg

Pretrained 78.16 70.75 64.46 55.86 67.31

Swa LoRA 76.17 66.71 63.40 65.12 67.85
Swa LAYRA (1,10) 76.17 66.51 63.34 63.07 67.27
Swa LAYRA (2,10) 76.70 66.64 56.59 63.53 65.87
Swa LAYRA (4,10) 77.04 66.51 62.41 64.46 67.61
Swa LAYRA (10,10) 77.04 67.97 62.41 65.06 68.12
Swa LAYRA (10,6) 76.57 67.64 63.53 64.53 68.07
Swa LAYRA (10,2) 76.51 66.51 63.27 63.73 67.51
Swa LAYRA (10,1) 75.58 67.57 63.20 62.94 67.32

Table 14: Ablation on LAYRA Configurations for Swahili XStoryCloze

Model deu eng spa fra hin tha swa glg Avg

Swa 0.0 50.84 55.81 50.64 46.22 48.07 46.43 34.66 54.02 48.34
Swa 0.1 49.76 54.50 51.16 47.79 47.91 44.62 37.23 55.54 48.56
Swa 0.2 50.32 54.18 51.45 48.92 48.63 44.82 39.52 54.74 49.07
Swa 0.3 50.16 54.58 51.37 49.60 48.31 44.54 40.92 54.32 49.23
Swa 0.4 49.24 54.78 51.24 49.64 48.55 44.30 42.21 53.24 49.15
Swa 0.5 48.88 54.74 50.96 48.63 47.95 44.82 43.86 52.01 48.98
Swa 0.6 47.55 54.30 49.92 47.59 46.67 45.14 45.06 49.69 48.24
Swa 0.7 46.55 54.06 48.80 46.72 45.18 45.18 46.34 47.55 47.55
Swa 0.8 46.22 53.09 47.15 44.66 44.02 44.86 46.71 44.66 46.42
Swa 0.9 45.34 50.88 44.18 41.08 40.68 44.74 46.59 41.92 44.43
Swa 1.0 44.90 48.15 42.01 40.28 40.28 44.18 45.30 37.23 42.79

Table 15: LAYRA-SERIES Ablation: Accuracy of varying λ′ with Galacian adapted model on
XNLI

Model deu eng spa fra swa glg Avg

Swa 0.0 67.40 67.15 64.30 63.30 50.35 65.25 62.96
Swa 0.1 66.60 67.15 64.85 64.20 52.85 63.65 63.22
Swa 0.2 65.95 67.10 64.50 63.45 53.80 63.10 62.98
Swa 0.3 65.55 67.20 63.55 63.25 54.80 61.50 62.64
Swa 0.4 65.15 67.40 63.60 62.95 54.80 59.15 62.18
Swa 0.5 65.10 66.80 62.90 63.50 53.75 55.65 61.28
Swa 0.6 65.10 65.95 62.40 61.60 52.45 51.85 59.89
Swa 0.7 63.75 65.00 60.75 60.30 51.30 48.50 58.27
Swa 0.8 62.40 64.25 60.70 58.80 50.80 47.10 57.34
Swa 0.9 61.55 63.15 58.70 56.65 50.80 46.55 56.23
Swa 1.0 61.55 62.10 59.00 55.40 52.75 46.15 56.16

Table 16: LAYRA-SERIES Ablation: Accuracy of varying λ′ with Galician adapted model on
PAWS-X
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Model eng spa ita tha swa glg Avg

Swa 0.0 86.00 76.80 60.20 58.40 54.40 63.20 66.50
Swa 0.1 83.00 78.80 61.40 58.80 56.40 62.00 66.73
Swa 0.2 83.00 77.40 63.20 57.60 57.20 61.80 66.70
Swa 0.3 86.00 77.00 65.20 57.60 57.00 61.20 67.33
Swa 0.4 83.00 76.00 64.60 57.60 58.20 61.40 66.80
Swa 0.5 81.00 74.40 64.20 57.40 59.40 61.80 66.37
Swa 0.6 79.00 71.60 64.00 55.80 61.80 60.00 65.37
Swa 0.7 78.00 69.60 62.60 55.60 62.20 59.00 64.50
Swa 0.8 79.00 67.20 62.20 56.60 63.00 56.80 64.13
Swa 0.9 80.00 63.80 59.20 56.80 62.80 55.40 63.00
Swa 1.0 78.00 62.60 56.00 57.00 62.40 55.80 61.97

Table 17: LAYRA-SERIES Ablation: Accuracy of varying λ′ with Galician adapted model on
XCOPA

Model eng spa hin swa glg Avg

Swa 0.0 76.11 69.69 63.20 50.69 69.89 65.92
Swa 0.1 76.37 69.82 63.27 52.22 70.28 66.39
Swa 0.2 76.44 69.69 64.00 54.20 70.68 67.00
Swa 0.3 76.37 69.16 64.00 55.72 69.95 67.04
Swa 0.4 76.17 68.83 64.46 56.92 68.70 67.02
Swa 0.5 75.91 68.23 64.13 58.44 67.31 66.80
Swa 0.6 75.58 67.90 63.60 59.43 65.25 66.35
Swa 0.7 74.98 66.98 63.80 60.75 62.94 65.89
Swa 0.8 74.32 65.85 64.00 61.02 61.15 65.27
Swa 0.9 72.67 63.40 63.67 61.48 58.44 63.93
Swa 1.0 70.62 61.68 63.53 61.48 56.19 62.70

Table 18: LAYRA-SERIES Ablation: Accuracy of varying λ′ with Galician adapted model on
XStoryCloze

Hyperparameter Description Value

Epochs Training epochs 1

Batch Size
1 language: 32
2 languages: 64
3 languages: 128

32
64
128

Sequence Length Maximum sequence length 2048
Warm-up Steps Proportion of total optimization steps 5%
Learning Rate (α) Initial learning rate 3e-4
Learning Rate Schedule Linear
Weight Decay (λ) Regularization parameter 0.1
Optimizer AdamW
Epsilon (ϵ) Optimizer stability parameter 1.0e-5
β1 First moment decay rate 0.9
β2 Second moment decay rate 0.95
GPUS Hardward H100 X2

Table 19: Hyperparameters for Experiments
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Task Swa Urd Glg

XNLI ✓ ✓ ✓
XStoryCloze ✓ - ✓
PAWS ✗ ✗ ✓
XCOPA ✓ ✗ ✓
MGSM ✓ ✓ ✗
MMLU-Lite ✓ ✗ ✗

Table 20: New languages Translated Using Google Machine Translate (GMT). All other
languages used for our evaluation but not listed here were obtained from the original dataset
release.

[h]

Figure 3: Accuracy of the instruction base model vs the LAYRA Instruct on XNLI, MGSM
and MMLU for English
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