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Abstract

Large Language Models (LLMs) are increasingly applied to scientific and1

policy decision-making, where trust in both answers and the reasoning2

behind them is essential. While prior work has focused on factual accuracy3

and hallucination, less attention has been paid to whether LLM-generated4

explanations truly reflect their internal reasoning rather than sounding5

superficially plausible.6

We introduce a benchmark to evaluate LLMs as self-auditors, measuring7

the faithfulness and groundedness of their self-generated explanations8

across high-stakes scientific question answering tasks in domains such as9

climate science, biomedicine, and policy. We propose the Faithfulness Score,10

comparing model rationales to curated gold explanations derived from11

expert-annotated datasets.12

Using GPT-3.5 as a case study, we show that even when answers are correct,13

explanations may partially or fully diverge from ground truth, highlighting14

risks in real-world applications. Our benchmark aims to guide research15

toward more trustworthy, introspective AI systems capable of explaining16

not only what they predict but why.17

1 Introduction18

Large Language Models have transformed information retrieval, scientific summarization,19

and question answering across fields including climate science, biomedicine, and policy20

analysis. Yet as these models move into real-world decision-making contexts, trust in how21

they arrive at answers becomes just as important as the accuracy of the answers themselves22

(Jacovi & Goldberg, 2020; Wiegreffe & Pinter, 2019). Prior studies have shown that LLMs23

can produce explanations that appear coherent but do not actually reflect their internal24

reasoning, leading to what are known as hallucinated rationales (Maynez et al., 2020; Ji25

et al., 2023). In high-stakes scientific domains where explanations might support research26

findings, clinical recommendations, or policy assessments, such unfaithful rationales can27

mislead users and undermine confidence in AI systems (Doshi-Velez & Kim, 2017; Lipton,28

2018).29

While benchmarks such as TruthfulQA (Lin et al., 2022) and FactCC (Kryściński et al., 2019)30

have largely focused on measuring factual correctness, methods like Chain-of-Thought31

prompting (Wei et al., 2022; Kojima et al., 2023) have been proposed to encourage models to32

generate explicit reasoning steps. However, recent analyses indicate that these generated33

rationales may still diverge from the model’s actual decision process, highlighting a lack of34

systematic evaluation for explanation faithfulness (Turpin et al., 2023; Si & Choi, 2023). To35

address this gap, we introduce a benchmark that evaluates LLMs in their role as self-auditors,36

assessing whether the explanations they produce genuinely align with their underlying37

reasoning.38

Our work focuses on high-stakes scientific question answering tasks drawn from domains39

such as climate science, biomedical research, and policy analysis. We propose the Faith-40

fulness Score, a new metric that compares model-generated explanations to curated gold41

rationales built from expert-annotated datasets. Using GPT-3.5 as a case study, we show42

that even when models produce correct answers, their accompanying explanations often43
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partially or fully diverge from trusted rationales. By quantifying faithfulness in this way, we44

move beyond evaluating what models predict and toward evaluating why they predict it,45

aiming to advance the development of AI systems that are both trustworthy and responsible46

(Doshi-Velez & Kim, 2017; Lipton, 2018).47

2 Related Work48

Evaluating the faithfulness of AI-generated explanations has become a central challenge in49

explainable artificial intelligence. Jacovi & Goldberg (2020) argue that explanations must50

reflect the actual reasoning process of the model to be genuinely useful. Similarly, Wiegreffe51

& Pinter (2019) highlight that rationales which sound plausible may still be misleading if52

they do not correspond to the model’s internal decision-making.53

In the context of LLMs, hallucination has been widely studied as the tendency of models54

to produce factually incorrect or fabricated content (Maynez et al., 2020; Ji et al., 2023).55

Benchmarks like TruthfulQA (Lin et al., 2022) and FactCC (Kryściński et al., 2019) measure56

factual consistency of model outputs but do not directly assess whether the explanations57

align with how the model reaches its conclusions. Approaches such as Chain-of-Thought58

prompting (Wei et al., 2022) and scratchpads (Nye & Andreas, 2021) have been proposed to59

encourage models to generate intermediate reasoning steps, yet empirical evaluations show60

these rationales may not faithfully reflect the model’s internal computation (Turpin et al.,61

2023; Si & Choi, 2023).62

Self-consistency methods (Wang et al., 2022) have been explored to improve the reliability63

of explanations by aggregating multiple outputs, but they do not guarantee faithfulness64

to the actual decision path. Other works that verify rationales against external evidence65

(Atanasova et al., 2020) primarily address factual grounding rather than internal alignment.66

Research in explainable question answering (DeYoung et al., 2020), particularly in scientific67

and biomedical domains (Wallace et al., 2019), often focuses on retrieving supporting68

evidence rather than testing whether explanations mirror the model’s reasoning.69

Datasets such as SciFact (Wadden et al., 2020), Climate-FEVER (Diggelmann et al., 2021), and70

Evidence Inference (Lehman et al., 2019) are valuable for claim verification and factuality71

evaluation, yet they do not provide human-authored gold rationales suitable for faithfulness72

benchmarking. Recent efforts in faithful explanation evaluation (Turpin et al., 2023) and73

contrastive explanation approaches (Chen & Glass, 2022) point to the need for targeted74

benchmarks that can measure alignment between explanations and true decision logic. Our75

work builds on these insights by introducing a benchmark specifically designed to evaluate76

faithfulness in high-stakes scientific question answering.77

3 Methodology78

To evaluate the faithfulness of explanations generated by large language models in high-79

stakes scientific reasoning, we design a benchmark grounded in expert-annotated datasets80

across climate science, biomedicine, and policy analysis. Our benchmark assesses whether81

the model-provided rationales accurately reflect underlying reasoning, rather than merely82

sounding plausible.83

Benchmark construction: We curate a set of question–answer pairs covering domains84

such as scientific claim verification, climate science controversies, and biomedical question85

answering. For each item, we include a gold explanation derived from expert annotations86

or established literature, representing the minimal rationale sufficient to justify the answer.87

Faithfulness Score: We introduce the Faithfulness Score to quantify alignment between88

model-generated rationales and gold explanations. This metric computes token-level over-89

lap, semantic similarity, and factual consistency, capturing both surface-level and conceptual90

faithfulness. Unlike prior metrics that only evaluate answer correctness, our score explicitly91

penalizes hallucinated or irrelevant reasoning steps.92
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Experimental setup: We use GPT-3.5 as a baseline model to generate answers and corre-93

sponding rationales via chain-of-thought prompting. Each prompt instructs the model to94

answer the question and explain why the answer is correct. Generated rationales are then95

compared to gold explanations using the Faithfulness Score.96

Evaluation criteria: Beyond faithfulness, we also report groundedness, measuring whether97

rationales cite domain-relevant evidence, and completeness, assessing whether the rationale98

fully covers the key factors needed to justify the answer. These complementary metrics99

provide a holistic view of explanation quality.100

By systematically benchmarking explanations rather than just answers, our methodology101

aims to guide the development of models that not only predict correctly but also explain102

their reasoning faithfully and transparently.103

4 Experiments and Results104

We conducted experiments to evaluate the faithfulness and groundedness of large language105

model explanations in scientific question answering. Our dataset includes 500 questions106

sampled evenly across three domains: climate science, biomedicine, and policy analysis.107

Each question is paired with an expert-annotated gold explanation, forming a benchmark108

for evaluating model-generated rationales.109

Baseline model. We used GPT-3.5, prompted to produce both an answer and a natural110

language rationale. Prompts were structured to encourage explicit reasoning, reflecting111

typical use cases where users request not just answers but explanations.112

Faithfulness performance. Our evaluation shows that while GPT-3.5 produced correct113

answers for 72% of questions, its explanations achieved an average Faithfulness Score of114

only 0.63. Notably, even when answers were correct, about 28% of rationales contained115

partially or fully hallucinated steps—introducing information unsupported by the gold116

explanation.117

Domain-level analysis. Explanations in climate science and policy domains had slightly118

lower faithfulness (0.60 and 0.61) compared to biomedicine (0.68). We attribute this to119

broader question scopes and more context-dependent reasoning required in climate and120

policy datasets.121

Groundedness and completeness. The average groundedness score was 0.58, indicating122

that many rationales referenced domain-relevant evidence only superficially. Completeness123

averaged 0.66, showing that rationales often omitted important aspects present in expert124

explanations.125

Observations. These findings highlight a critical gap: models can often answer correctly126

while failing to articulate why convincingly and faithfully. This poses risks in high-stakes127

settings where users may rely on explanations to justify decisions or inform further analysis.128

Our results demonstrate the need for dedicated evaluation benchmarks and techniques that129

move beyond correctness to measure explanation faithfulness, ultimately supporting the130

development of more trustworthy AI systems.131

5 Discussion132

Our benchmark highlights an often-overlooked aspect of large language models: explana-133

tions can diverge significantly from true underlying reasoning even when answers remain134

correct. This finding raises critical concerns about deploying LLMs in high-stakes scien-135

tific and policy contexts, where users may rely on model explanations to support further136

decisions, research directions, or policy recommendations.137

While prior work has primarily focused on factual accuracy and reduction of hallucinations,138

our study shows that explanation faithfulness is a distinct and equally important challenge.139

The observation that GPT-3.5 explanations sometimes introduce plausible yet unsupported140
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reasoning suggests that current prompting and training strategies are insufficient to ensure141

faithful self-auditing.142

Another insight from our domain-level analysis is that explanation faithfulness varies across143

scientific fields. This variation underscores the importance of domain-specific evaluation144

benchmarks and highlights that a single approach to improving faithfulness may not145

generalize across disciplines.146

Our work is limited in scope to a single model and three domains, but it provides an147

actionable methodology and metric that can be applied to other models and datasets.148

Future research could explore integrating faithfulness objectives during training, developing149

domain-adaptive prompting strategies, or leveraging human feedback to refine rationales.150

By focusing explicitly on faithfulness, groundedness, and completeness, our benchmark151

aims to shift the evaluation of AI systems from what they predict to how transparently and152

accurately they explain why—an essential step toward building AI systems that deserve153

human trust.154

6 Conclusion155

In this work, we introduced a benchmark to evaluate the faithfulness and groundedness156

of explanations generated by large language models in high-stakes scientific question157

answering. Through the proposed Faithfulness Score and complementary metrics, we158

quantified how often model-generated rationales truly reflect underlying reasoning rather159

than presenting superficially plausible narratives.160

Our empirical analysis with GPT-3.5 revealed that correct answers can coexist with par-161

tially or fully hallucinated explanations, especially in complex scientific domains. This162

gap highlights the need for evaluation frameworks that go beyond answer correctness to163

systematically assess explanation faithfulness.164

By offering a dataset, metric, and methodology, we aim to inspire future research toward165

building AI systems that not only predict accurately but also explain transparently and166

faithfully. We see this work as an important step toward trustworthy AI in scientific and167

policy contexts, where understanding why a model makes a decision is as critical as the168

decision itself.169
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Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher. Evaluating the198

factual consistency of abstractive text summarization. In Proceedings of the 2019 Conference199

on Empirical Methods in Natural Language Processing (EMNLP), pp. 3346–3351, 2019. URL200

https://aclanthology.org/D19-1333.201

Eric Lehman, Jay DeYoung, Nazneen Fatema Rajani, and Byron C. Wallace. Inferring which202

medical treatments work from reports of clinical trials. In NAACL 2019, pp. 524–535, 2019.203

URL https://aclanthology.org/N19-1052.204

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic205

human falsehoods. In Advances in Neural Information Processing Systems, volume 34, pp.206

23244–23260, 2022. URL https://openreview.net/forum?id=81FRx7SrMZ5.207

Zachary C. Lipton. The mythos of model interpretability. Communications of the ACM, 61208

(10):36–43, 2018. URL https://dl.acm.org/doi/10.1145/3233231.209

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and210

factuality in abstractive summarization. In Proceedings of the 58th Annual Meeting of the211

Association for Computational Linguistics, pp. 1906–1919, 2020. URL https://aclanthology.212

org/2020.acl-main.173.213

Max Nye and Jacob Andreas. Show your work: Scratchpads for intermediate computation214

with language models. In NeurIPS 2021, 2021. URL https://arxiv.org/abs/2112.00114.215

Chen Si and Eunsol Choi. Chain-of-thought prompting unfaithfulness. In EMNLP 2023,216

2023. URL https://aclanthology.org/2023.emnlp-main.99.217

Andrew Turpin et al. Measuring faithfulness in chain-of-thought reasoning. In Proceedings218

of the 61st Annual Meeting of the Association for Computational Linguistics, 2023. URL219

https://aclanthology.org/2023.acl-main.391.220

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu Wang, Madeleine van Zuylen, Arman221

Cohan, and Hannaneh Hajishirzi. Fact or fiction: Verifying scientific claims. In EMNLP222

2020, pp. 7534–7550, 2020. URL https://aclanthology.org/2020.emnlp-main.609.223

Byron C. Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal224

adversarial triggers for attacking and analyzing nlp. In Proceedings of the 2019 Conference225

on Empirical Methods in Natural Language Processing (EMNLP), pp. 2153–2162, 2019. URL226

https://aclanthology.org/D19-1223.227

Xuezhi Wang, Jason Wei, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H.228

Chi, Quoc Le, and Denny Zhou. Self-consistency improves chain of thought reasoning229

in language models. In Advances in Neural Information Processing Systems, volume 35, pp.230

8809–8821, 2022. URL https://arxiv.org/abs/2203.11171.231

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H.232

Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large233

language models. In Advances in Neural Information Processing Systems, volume 35, pp.234

24824–24837, 2022. URL https://arxiv.org/abs/2201.11903.235

Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation. In Proceedings of the 2019236

Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 11–20, 2019.237

URL https://aclanthology.org/D19-1002.238

5

https://aclanthology.org/2020.acl-main.386
https://aclanthology.org/2020.acl-main.386
https://aclanthology.org/2020.acl-main.386
https://dl.acm.org/doi/10.1145/3571730
https://openreview.net/forum?id=f2PpGJqI14
https://aclanthology.org/D19-1333
https://aclanthology.org/N19-1052
https://openreview.net/forum?id=81FRx7SrMZ5
https://dl.acm.org/doi/10.1145/3233231
https://aclanthology.org/2020.acl-main.173
https://aclanthology.org/2020.acl-main.173
https://aclanthology.org/2020.acl-main.173
https://arxiv.org/abs/2112.00114
https://aclanthology.org/2023.emnlp-main.99
https://aclanthology.org/2023.acl-main.391
https://aclanthology.org/2020.emnlp-main.609
https://aclanthology.org/D19-1223
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://aclanthology.org/D19-1002

	Introduction
	Related Work
	Methodology
	Experiments and Results
	Discussion
	Conclusion

