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Abstract

Part-of-speech (POS) tagging for medieval romance languages presents unique1

challenges due to linguistic variation, historical orthography, and limited anno-2

tated resources. This study investigates the effectiveness of large language models3

(LLMs) in enhancing POS tagging accuracy for three medieval romance languages:4

Medieval Occitan, Medieval Catalan, and Medieval French. We compare tradi-5

tional rule-based and statistical approaches (COLaF and UDPipe) with modern6

open-source LLMs (Gemma3-12B and Phi4-14B). Our methodology encompasses7

zero-shot and few-shot learning paradigms, fine-tuning experiments, and cross-8

lingual transfer learning. Using historically significant datasets including the9

Nouvelle Acquisition Française 6195 manuscript, Llibre dels Fets, and Gui de10

Chauliac’s Anathomie, we evaluate the performance gains achievable through neu-11

ral approaches across different domains. The findings demonstrate that LLMs12

can significantly improve POS tagging accuracy for medieval texts, showing sub-13

stantial improvements over traditional taggers. Cross-lingual transfer learning14

reveals shared linguistic features across medieval romance languages that can be15

leveraged for better performance on under-resourced historical varieties. These16

results have important implications for digital humanities research, enabling more17

accurate downstream tasks such as syntactic parsing, named entity recognition,18

and diachronic linguistic analysis. We make our codebase, datasets, and models19

publicly available 1.20

1 Introduction21

The computational processing of historical texts represents a critical challenge in digital humanities,22

where accurate linguistic annotation enables sophisticated analyses of cultural, social, and linguistic23

evolution. Part-of-speech (POS) tagging, as a fundamental preprocessing step, underpins numerous24

downstream applications including syntactic parsing, semantic analysis, and diachronic linguistic25

studies (Piotrowski, 2012; Ehrmann et al., 2020). For medieval romance languages, this task is26

particularly challenging due to substantial orthographic variation, morphological complexity, and the27

scarcity of large-scale annotated corpora (Schöffel et al., 2025a).28

Medieval romance languages—descendants of Latin that evolved between the 6th and 15th cen-29

turies—exhibit significant linguistic diversity (cf. Figure 1) and historical importance. Medieval30

Occitan served as the literary language of troubadour poetry across western Europe, Medieval Cata-31

lan documented the expansion of the Crown of Aragon, and Medieval French preserved extensive32

literary and administrative records. Despite their cultural significance, these languages remain under-33

resourced in terms of computational tools and annotated datasets, limiting scholarly research and34

accessibility of historical documents.35

Traditional approaches to POS tagging for historical languages have relied primarily on rule-based36

systems and statistical models adapted from modern language resources. Tools such as COLaF for37

Medieval French and Occitan, and UDPipe (Straka et al., 2016) for various languages including38

Medieval Catalan, have provided baseline performance but face limitations when confronting the39

linguistic complexities of historical texts. These challenges include non-standardized spelling,40

dialectal variation, lexical gaps, and morphological ambiguity.41

1https://anonymous.4open.science/r/medieval-romance-pos-4C8C/README.md
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(a) Map of Medieval Occitan and Medieval Catalan
variations (13th century)

Spelling variants Modern/Known spelling

Medieval French
deffendre défendre (engl. ’to defend’)
joinncture jointure (engl. ’knuckle’)
sun son (engl. ’his’)
pruz preux (engl. ’brave’)

Medieval Catalan
ssaber saber (engl. ’to know’)
Ffrança França (engl. ’France’)
hòmens homes (engl. ’men’)
jóvens joves (engl. ’youth’)

Medieval Occitan
deceplina disciplina, disiplina, desi-

plina (engl. ’discipline’)
falssa fals (engl. ’false’)
liech/lech lloc (engl. ’place’)
fuoc/foc foc (engl. ’fire’)

(b) Spelling characteristics across medieval language
variations

Figure 1: Geographic distribution and spelling characteristics of medieval Romance languages (13th
century). Left: Map showing Medieval Occitan and Medieval Catalan regional variations Cabré
(2014). Right: Comparative analysis of spelling variants across Medieval French, Medieval Catalan,
and Medieval Occitan sources.

The emergence of large language models (LLMs) presents new opportunities for improving historical42

language processing. Recent work has demonstrated the potential of neural approaches for various43

NLP tasks on historical texts (Bollmann et al., 2019; Manjavacas et al., 2019; Schöffel et al.,44

2025a). However, systematic evaluation of LLMs for medieval romance language POS tagging45

remains limited, particularly regarding the comparative effectiveness of different model architectures,46

prompting strategies, and training paradigms.47

This study addresses these gaps through a comprehensive evaluation framework comparing traditional48

and neural approaches to POS tagging for medieval romance languages. We investigate three key49

research questions: (1) How do LLMs perform compared to existing tools for medieval romance50

language POS tagging? (2) What is the relative effectiveness of different prompting strategies and51

decoding parameters? (3) Can cross-lingual transfer learning improve performance across related52

medieval languages?53

Our contributions include: (1) a systematic comparison of traditional and neural POS tagging54

approaches for three medieval romance languages, (2) comprehensive evaluation of prompting strate-55

gies and decoding parameters for historical language processing, (3) investigation of cross-lingual56

transfer learning potential across medieval romance varieties, and (4) practical recommendations for57

implementing LLM-based approaches in historical text processing workflows.58

2 Related Work59

Historical language processing has evolved from early rule-based approaches to sophisticated statisti-60

cal and neural methods. Piotrowski (2012) provided foundational work on computational approaches61

to historical texts, highlighting the unique challenges posed by orthographic variation and linguistic62

change. Scheible et al. (2011) developed normalization approaches for Early Modern German,63

demonstrating the importance of preprocessing for historical text analysis. For romance languages64

specifically, recent work has focused on developing specialized tools and corpora. Camps et al. (2021)65

introduced methods for lemmatization and POS-tagging of Classical French theatre, demonstrating66

significant improvements over general-purpose tools when adapted for historical varieties. Their67

work established benchmarks for evaluation and showed the importance of domain-specific training68

data for historical language processing.69
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The application of neural methods to historical languages has gained momentum in recent years.70

Bollmann et al. (2019) demonstrated that neural networks could improve performance on historical71

text normalization tasks when applied at scale. Manjavacas et al. (2019) showed that joint learning72

approaches could enhance lemmatization for non-standard historical varieties, establishing that73

modern neural techniques could capture historical linguistic patterns effectively. Kestemont et al.74

(2016) investigated lemmatization for variation-rich languages using deep learning, showing that75

neural approaches could handle the morphological complexity typical of historical texts. Springmann76

& Lüdeling (2016) extended this work to OCR post-correction, demonstrating the broader applicability77

of neural methods to historical text processing pipelines. Garces Arias et al. (2023) proposed a78

Transformer-based pipeline for HTR to digitize Old Occitan pairs of graphical variants and lemmas,79

aiming at expanding the DOM dictionary2. Furthermore, Schöffel et al. (2025a); Schöffel et al.80

(2025b), who built upon the dataset released by Wiedner (2025), examined the impact of prompting81

LLMs on Medieval Romance Languages, highlighting the potential of LLMs for historical language82

processing. Recent work has explored the application of large language models to various linguistic83

annotation tasks. Brown et al. (2020) demonstrated the few-shot learning capabilities of large84

language models, showing promising results for various NLP tasks without task-specific training. Wei85

et al. (2022) investigated prompting strategies that could elicit reasoning in large language models,86

establishing best practices for few-shot learning scenarios. For multilingual applications, Müller87

et al. (2021) demonstrated that multilingual neural models could perform well on historical text88

translation, while Karthikeyan et al. (2020) showed that cross-lingual transfer learning could improve89

performance on individual varieties within language families.90

3 Methodology91

We analyze four distinct tasks: traditional POS tagging, LLM prompting, LLM fine-tuning, and92

LLM cross-lingual transfer learning (LLM-CLTL). The first task serves as a baseline to establish93

the capabilities of traditional models. The latter three tasks involve open-source LLMs through94

different methodologies: prompting with multiple decoding strategies, monolingual and multilingual95

fine-tuning, enabling us to investigate how exposure to both the target language and syntactically96

similar languages impacts model performance. Experimental details are presented in Table 2.97

3.1 Datasets98

We employ three historically relevant datasets representing different medieval romance varieties99

and textual genres. Medieval Occitan: The Nouvelle Acquisition Française 6195 (NAF6195),100

also known as manuscript M of the Vida de Sant Honorat, dating from the 14th century. This101

manuscript represents Provençal literary tradition and contains approximately 45,457 tokens with102

manual POS annotations (Wiedner, 2025). Medieval Catalan: The Llibre dels Fets, a historical103

chronicle documenting the reign of James I of Aragon, composed in the 13th century. This text104

represents early administrative Catalan and contains approximately 59,359 tokens with consistent105

morphological annotation (Pujol i Campeny & Meelen, 2021). Medieval French: Anathomie from106

Gui de Chauliac’s Grande Chirurgie, a 15th-century medical treatise. This technical text provides107

examples of specialized medieval vocabulary and contains approximately 2,443 tokens with detailed108

linguistic annotation granted by Tittel (2004)3.109

3.2 Models110

We analyze the performance of traditional POS tagger models as baselines for our analysis: COLaF,111

UDPipe (Straka et al., 2016). Further, we explore the potential of modern open-source LLMs:112

Gemma3-12B (Gemma-Team et al., 2024a) and Phi4-14B (Abdin et al., 2024a), when conducting113

prompting, fine-tuning, and multilingual fine-tuning. Excluding COLaF and UDPipe for Medieval114

French, none of the models has been previously exposed to Medieval Occitan, Catalan, or French. For115

an overview of representative languages supported by each model, we refer to Table 5 in Appendix A.116

2https://dom-en-ligne.de/ is the reference dictionary for Medieval Occitan with 79,913 entries,
38,869 unique lemmas, and 41,044 graphical variants as of March 2025.

3Each dataset underwent preprocessing including tokenization, sentence segmentation, and manual verifica-
tion of annotations. We standardized tagsets across languages using Universal Dependencies conventions.
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3.3 Prompting Strategies117

As detailed in Table 1, we investigate the effect of two prompting strategies: Zero-shot and Few-shot.118

In zero-shot, models receive task instructions and examples without target-domain training data.119

Prompts include clear task descriptions, tagset definitions, and output format specifications, while in120

few-shot, models receive target-domain examples within prompts. Examples are selected to represent121

diverse linguistic phenomena, including morphological variations for each language.122

Prompting Strategy Prompt
Zero-shot You are a linguistic expert in Medieval Romance languages.

Analyze the given text and assign Universal Dependencies Part-of-Speech tags
(UPOS) to each token.
Available tags: “ADJ”, “ADP”, “ADV”, “AUX”, “CCONJ”, “DET”, “INTJ”,

“NOUN”, “NUM”, “PART”, “PRON”, “PROPN”, “PUNCT”, “SCONJ”,
“VERB”, “X”, “SYM”.
Return a JSON array of objects, each with only “word” and “UPOS” keys.
Output only the JSON array, properly formatted and closed, with no extra text or
explanation.

Few-shot Zero-shot prompt +
Consider syntactic and semantic relationships, including agreement, word order,
and morphology. Medieval Romance languages often exhibit significant spelling
variation; for example, Old Occitan: ‘ansy’, ‘eynsi’, or ‘anes’; Old Catalan:

‘fiyl’, or ‘conseyl’; Middle French: ‘norryr’ or ‘norrir’.

Example format:
{“word”: “bo”, “UPOS”: “ADJ”}, {“word”: “volch”,
“UPOS”: “VERB”}, {“word”: “seyor”, “UPOS”: “NOUN”},
{“word”: “homps”, “UPOS”: “NOUN”}, {“word”:
“sant”, “UPOS”: “ADJ”}, {“word”: “iorn”, “UPOS”:
“NOUN”}, {“word”: “ilz”, “UPOS”: “PRON”}, {“word”:
“addicions”, “UPOS”: “NOUN”}, {“word”: “deffendre”,
“UPOS”: “VERB”}]

Table 1: Comparison of different prompting strategies for UD POS tagging.

3.4 Decoding Strategies123

We systematically evaluate the impact of different decoding strategies (Wiher et al., 2022; Garces Arias124

et al., 2025) on model performance. Specifically, we compare four widely-used approaches: beam125

search, temperature sampling Ackley et al. (1985), top-k sampling (Fan et al., 2018), and top-p126

sampling (Holtzman et al., 2019). The complete hyperparameter choices are detailed in Table 2.127

3.5 Fine-tuning Experiments128

We conduct fine-tuning experiments using two approaches. First, we fine-tune each LLM on individual129

target datasets using an 80%-20% train-test split. Second, we investigate cross-lingual transfer130

learning by training models on the combined data from all three datasets and evaluating performance131

on each target language separately. This cross-lingual approach tests whether shared linguistic132

features across medieval romance varieties (Blaschke et al., 2025) can improve performance on133

individual target languages, particularly for under-resourced varieties with limited training data. For134

the cross-lingual experiments, we maintain the same split ratio across the combined dataset. Detailed135

hyperparameters are provided in Table 7.136

3.6 Evaluation Metrics137

We employ standard metrics (cf. Appendix E). Accuracy: Percentage of correctly predicted tags138

across all tokens, providing overall performance assessment. Macro-averaged F1: Average F1 score139

across all POS categories, ensuring balanced evaluation across frequent and rare tags.140
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3.7 Experimental Setup141

Models & Datasets

Traditional COLaF, UDPipe
LLMs Gemma3-12B (Gemma-Team et al., 2024b), Phi4-14B (Abdin et al.,

2024b)
Language support in Table 5, Appendix A

Datasets NAF (Medieval Occitan, 14th c.), CAT (Medieval Catalan, 13th c.),
Chauliac (Medieval French, 15th c.)

Experimental Tasks

Task 1: Traditional Direct evaluation using COLaF and UDPipe on all datasets

Task 2: LLM Prompting Zero-shot & few-shot prompting (Table 1)
Decoding: beam search (w ∈ {1, 15}), temperature (τ ∈
{0.6, 0.8, 0.9}), top-k (k ∈ {5, 20, 50}), top-p (p ∈ {0.75, 0.85, 0.95})

Task 3: LLM Fine-tuning 80/20 train/test split per dataset
Each model fine-tuned and tested on same dataset (1-to-1 mapping)

Task 4: LLM CLTF 80% of all datasets for training, 20% per dataset for testing
Multilingual training → monolingual testing (N-to-1 transfer)

Table 2: Experimental setup for POS tagging of medieval romance languages. Evaluation focused
on accuracy with precision, recall, and F1-measures available (Appendix E). All experiments used
NVIDIA H100-96GB GPU. Hyperparameters detailed in Appendices B and C.

4 Results142

4.1 Overall Performance Comparison143

Figure 2: Performance evolution at a dataset level. From traditional POS taggers to multilingual
fine-tuning with LLMs. Shaded areas represent variability.
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The results demonstrate a clear performance evolution across four distinct tasks, as visualized in144

Figure 2. Traditional methods achieve 71.56% average accuracy with high variability [61.17%,145

81.95%], reflecting inconsistent performance across datasets. LLM-based prompting improves146

performance to 77.35% [76.17%, 78.52%] with notably reduced variability, indicating more reliable147

baseline capabilities. The three datasets exhibit distinct performance profiles: CAT shows the148

largest performance gap between traditional methods and fine-tuned LLMs (10.93 percentage points),149

followed by NAF and Chauliac (with average performances of approximately 5 percentage points).150

LLM fine-tuning represents a substantial advancement, reaching 85.19% average accuracy [80.41%,151

89.97%]. This approach demonstrates particular strength on the CAT dataset, where both Gemma3152

and Phi4 exceed 92% performance. However, the wider confidence interval suggests sensitivity to153

dataset characteristics.154

The proposed LLM-CLTF task achieves the highest performance at 88.01% average accuracy with the155

tightest confidence interval [86.96%, 89.06%], indicating both superior effectiveness and remarkable156

consistency. Compared to traditional UDPipe baseline, CLTF shows substantial improvements on157

NAF (+21.67%) and CAT (+7.57%), while exhibiting marginal decreases on Chauliac (-1.17%),158

suggesting dataset-dependent optimization patterns. A detailed overview is presented in Table 3.159

The systematic progression from 71.56% (Traditional) through 77.35% (Prompting) and 85.19%160

(Fine-tuning) to 88.01% (CLTF) illustrates clear methodological advancement, with each approach161

building upon previous strengths while addressing performance limitations.162

Task Model/Strategy NAF CAT Chauliac
Acc. F1 Acc. F1 Acc. F1

Traditional UDPipe 68.01 67.29 81.59 81.19 89.40 89.53
COLaF 65.73 65.47 52.15 51.50 72.50 67.43

Prompting

Gemma3 Zero-shot 62.53 61.81 72.54 74.03 82.49 82.58
Gemma3 Few-shot 69.39 69.22 79.48 80.49 84.80 85.20
Phi4 Zero-shot 72.78 71.94 80.84 81.01 84.45 84.61
Phi4 Few-shot 75.01 74.31 83.69 83.75 84.98 85.19

Fine-tuning Gemma3 80.09 79.99 92.52 92.50 83.64 83.74
Phi4 78.36 78.35 92.20 92.13 84.33 84.10

CLTF Gemma3 89.68 89.66 89.16 89.11 88.23 88.09
Phi4 86.48 86.39 87.94 87.74 86.57 86.48

∆CLTF,Traditional Gemma3 vs UDPipe +21.67 +22.37 +7.57 +7.92 -1.17 -1.44

Table 3: Overall Performance Comparison Across Methods and Datasets. Best result per method is
highlighted in bold, while best overall results per column are highlighted in green .

4.2 Task-Specific Analysis163

4.2.1 Traditional vs. LLM-based Approaches164

The comparison between traditional POS taggers and LLM-based methods reveals substantial perfor-165

mance gains for LLM approaches. UDPipe, the superior traditional method, achieves competitive166

performance on Chauliac (89.40% accuracy) but significantly underperforms on NAF (68.01%167

accuracy), highlighting the challenges posed by the Medieval Occitan dataset.168

4.2.2 Prompting Strategy Effectiveness169

Few-shot prompting consistently outperforms zero-shot approaches across all datasets, models, and170

decoding strategies (cf. Fig 3). The performance gains are substantial, ranging from 2.94 percentage171

points on the Chauliac dataset with Gemma3 to 10.24 percentage points on NAF with Phi4. Among172

the models tested, Phi4 demonstrates superior prompting capabilities, achieving the best results173

across all datasets compared to Gemma3. For decoding strategies, deterministic methods proved174

more effective than sampling-based alternatives, with beam search using a beam width of 15 yielding175

optimal performance. Comprehensive performance metrics at the dataset level, including variation176

analysis, are detailed in Tables 8 and 9 (Appendix D.1).177
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Figure 3: Decoding strategy performance across varying prompts, models and datasets.

4.2.3 Fine-tuning vs. Cross-Lingual Transfer Learning178

Fine-tuning on individual datasets yields the highest performance for CAT (92.52% with Gemma3),179

while CLTF demonstrates remarkable effectiveness for NAF, improving accuracy by 9.59 percentage180

points over single-dataset fine-tuning with Gemma3. This suggests that cross-lingual transfer learning181

particularly benefits resource-scarce languages like Medieval Occitan. Figure 4 illustrates the effects182

of LLM-CLTF on a dataset-model level.183

Figure 4: Effect of CLTF with respect to single-dataset LLM finetuning.
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5 Error Analysis184

5.1 Part-of-Speech Class Performance185

Tables 10, 11, and 12 in Appendix D.2 present F1-scores for major POS classes across representative186

methods, revealing systematic patterns in method effectiveness. Adjectives (ADJ) and adverbs (ADV)187

present the greatest challenges for traditional methods, with UDPipe achieving F1-scores below 55%.188

These classes show substantial improvement with LLM-based approaches, particularly fine-tuning,189

which achieves improvements exceeding 25 percentage points. This pattern suggests that LLMs190

better capture the contextual nuances necessary for disambiguating these semantically complex191

categories. Pronouns (PRON) demonstrate consistent improvement across LLM methods, with192

fine-tuning achieving 84.47% F1-score compared to 62.19% for UDPipe. This improvement likely193

reflects LLMs’ enhanced capacity for processing anaphoric relationships and contextual reference194

resolution. On the other hand, function words, particularly adpositions (ADP) and coordinating195

conjunctions (CCONJ), maintain high performance across all methods. UDPipe achieves 94.34%196

F1-score for ADP, demonstrating that traditional approaches effectively handle these syntactically197

predictable categories. Verbs show remarkable consistency across methods, with performance ranging198

from 91.31% (UDPipe) to 93.55% (Phi4 few-shot prompting). This stability suggests that verbal199

morphology provides sufficient surface-level cues for accurate classification across methodological200

approaches.201

5.2 Cross-Lingual Transfer Effects202

Analysis of CLTF results reveals differential benefits across POS classes. Content words (NOUN,203

ADJ, VERB) show greater improvement from cross-lingual exposure compared to function words,204

suggesting that semantic representations benefit more from multilingual training than syntactic205

patterns. The NAF dataset exhibits the most substantial CLTF gains, with accuracy improving from206

80.09% (single-dataset fine-tuning) to 89.68% (CLTF). This improvement is particularly pronounced207

for low-frequency POS classes, indicating that cross-lingual transfer learning effectively addresses208

data sparsity issues in medieval language processing.209

6 Practical Recommendations210

6.1 Method Selection Framework211

Performance analysis reveals distinct optimal strategies depending on computational resources and212

target language characteristics, as illustrated in Table 4.213

Dataset High Resources Limited Resources
NAF (Medieval Occitan) CLTF (89.68% acc.) Few-shot Prompting (75.01% acc.)
CAT (Medieval Catalan) Fine-tuning (92.52% acc.) Few-shot Prompting (83.69% acc.)
Chauliac (Medieval French) UDPipe or CLTF (88.23% acc.) UDPipe (89.40% acc.)

Table 4: Method selection by dataset and computational constraints.

For resource-scarce languages like Medieval Occitan, CLTF provides substantial gains (+21.67214

percentage points over traditional methods). Medieval Catalan benefits most from dedicated fine-215

tuning, while Medieval French technical texts show strong performance with existing traditional tools216

under resource constraints.217

6.2 Implementation Guidelines218

Prompting Configuration Few-shot prompting consistently outperforms zero-shot across all219

conditions, with improvements ranging from 2.94 to 10.24 percentage points. Phi4 demonstrates220

superior prompting capabilities, achieving 81.23% average accuracy compared to Gemma3’s 77.81%.221

For decoding, beam search with width 15 provides optimal results across all datasets and models.222
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Cross-Lingual Transfer Learning CLTF shows particular effectiveness for under-resourced vari-223

eties. Medieval Occitan achieves the largest improvement (+9.59 percentage points over monolingual224

fine-tuning), while Medieval Catalan shows marginal gains (+3.36 percentage points). We recommend225

CLTF in the presence of languages with syntactic similarities and following resource availability.226

Performance-Cost Trade-offs The progression from prompting (77.35% average accuracy) to227

fine-tuning (85.19%) to CLTF (88.01%) represents diminishing returns relative to computational228

investment. For production systems processing single languages, the 7.84 percentage point improve-229

ment from prompting to fine-tuning may justify computational costs. The additional 2.82 percentage230

point gain from CLTF requires multilingual training data and infrastructure.231

6.3 Quality Assurance Considerations232

Error analysis reveals systematic performance patterns across POS classes. Content words (ADJ,233

ADV, PRON) show the largest improvements with neural methods, with F1-score gains exceeding 25234

percentage points for adjectives and adverbs. Function words (ADP, CCONJ) maintain consistently235

high performance (>90% F1) across all methods, suggesting reliable baseline capabilities. For236

production deployment, we recommend implementing class-specific validation protocols, particularly237

for content word categories where traditional methods show substantial limitations (ADJ: 54.12% F1238

with UDPipe vs. 79.75% with fine-tuned models).239

6.4 Resource Allocation Strategy240

Based on performance variance analysis, CLTF provides the most stable results across datasets241

(coefficient of variation: 0.001), while traditional methods show high variability (standard deviation:242

10.08 percentage points). For multi-language digital humanities projects, CLTF training followed by243

language-specific evaluation provides robust performance with predictable resource requirements.244

7 Conclusion245

This study systematically evaluates large language models for POS tagging across three medieval246

romance languages, comparing neural approaches with traditional tools through four distinct ex-247

perimental tasks. Our results demonstrate measurable performance improvements: LLM-based248

approaches achieve 77.35% average accuracy through prompting, 85.19% through fine-tuning, and249

88.01% through cross-lingual transfer learning, compared to 71.56% for traditional methods. Cross-250

lingual transfer learning shows particular effectiveness for resource-scarce varieties, with Medieval251

Occitan (NAF) exhibiting a 21.67 percentage point improvement over the traditional UDPipe base-252

line. Few-shot prompting consistently outperforms zero-shot approaches across all datasets, while253

beam search with width 15 emerges as the optimal decoding strategy. Our evaluation framework254

provides systematic guidance for implementing neural approaches to historical language processing.255

Performance gains vary substantially across POS classes, with content words (adjectives, adverbs,256

pronouns) showing greater improvements than function words. These findings suggest that LLMs can257

enhance accuracy for downstream tasks in digital humanities research, including syntactic parsing and258

diachronic analysis. Future work should examine additional historical language families, investigate259

the potential of syntactic similarities for optimized cross-lingual transfer learning.260

Limitations This study focuses on three medieval romance varieties from specific periods (13th-261

15th centuries) and domains (literary, administrative, medical), which limits generalizability to other262

historical language families. Dataset sizes vary considerably (2,443 to 59,359 tokens), reflecting263

historical corpus constraints but potentially affecting cross-language performance comparisons. The264

cross-lingual transfer learning approach assumes sufficient linguistic similarity among medieval265

romance varieties to enable effective knowledge transfer—an assumption supported by historical266

linguistics but requiring validation for more distantly related languages. Computational requirements267

for fine-tuning (NVIDIA H100-96GB GPU) may limit accessibility, though our prompting results268

provide viable alternatives for resource-constrained environments. Our evaluation centers on POS269

tagging accuracy as a fundamental task, establishing baseline performance for historical language270

processing. Downstream task improvements remain to be validated in future work.271
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Appendix409

A Supported languages (pre-training)410

Language COLaF UDPipe Phi4-14B Gemma3-12B
Occitan (modern) ✓ ✓
Medieval Occitan
Catalan (modern) ✓ ✓
Medieval Catalan
French (modern) ✓ ✓ ✓ ✓
Medieval French ✓ ✓
Spanish (modern) ✓ ✓ ✓
Italian (modern) ✓ ✓ ✓
Portuguese (modern) ✓ ✓ ✓
Romanian (modern) ✓ ✓ ✓
Galician (modern) ✓ ✓
Asturian (modern) ✓
Sardinian (modern) ✓
Sicilian (modern) ✓
Ligurian (modern) ✓
Lombard (modern) ✓
Venetian (modern) ✓
Friulian (modern) ✓
Arabic ✓ ✓ ✓
English ✓ ✓ ✓

Table 5: Language support (modern vs. medieval) across traditional POS taggers (COLaF, UDPipe)
and LLMs (Phi4-14B and Gemma3-12B).

B Hyperparameters for LLM Prompting411

Category Hyperparameter Value

Tokenizer
Max Length 8192
Padding Side left

Data Type torch.bfloat16 (Gemma)
torch.float16 (Phi-4)

Model Max New Tokens 300
Batch Size 8

Processing Chunk Size 20
Window Length 5

Table 6: Hyperparameters used for LLM prompting experiments.
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C Hyperparameters for LLM Fine-tuning412

Category Hyperparameter Value

LoRA

LoRA Rank (r) 16
LoRA Alpha (α) 32
LoRA Dropout 0.1

Target Modules q_proj, v_proj,
k_proj, o_proj

Training

Learning Rate 2 × 10−4

Batch Size 4
Number of Epochs 10
Optimizer AdamW
Weight Decay 0.01

Table 7: Hyperparameters used for LLM fine-tuning experiments with LoRA.

D Performance Analysis413

D.1 Effect of Decoding Strategies414

Model Strategy NAF CAT Chauliac Average Std Dev

Gemma3

Zero-shot + Beam-15 62.53 72.54 82.36 72.48 10.08
Few-shot + Beam-1 69.24 79.37 84.27 77.63 7.51
Few-shot + Beam-15 69.39 79.52 84.51 77.81 7.50
Few-shot + Top-k-5 69.22 79.48 84.80 77.83 7.79
Few-shot + Top-k-20 69.29 79.33 84.35 77.66 7.51
Few-shot + Top-k-50 69.17 79.41 84.28 77.62 7.56
Few-shot + Top-p-0.75 69.33 79.47 84.56 77.79 7.62
Few-shot + Top-p-0.85 69.34 79.42 84.44 77.73 7.54
Few-shot + Top-p-0.95 69.27 79.31 83.99 77.52 7.34
Few-shot + Temp-0.6 69.23 79.46 84.49 77.73 7.63
Few-shot + Temp-0.8 69.30 79.35 84.31 77.65 7.48
Few-shot + Temp-0.9 69.35 79.43 84.39 77.72 7.52

Phi4

Zero-shot + Beam-15 72.77 80.84 84.09 79.23 6.67
Few-shot + Beam-1 74.86 83.47 84.60 80.98 5.37
Few-shot + Beam-15 75.01 83.69 84.98 81.23 5.32
Few-shot + Top-k-5 74.02 82.88 84.31 80.40 5.15
Few-shot + Top-k-20 73.76 82.85 83.98 80.20 5.55
Few-shot + Top-k-50 73.80 82.81 84.11 80.24 5.21
Few-shot + Top-p-0.75 74.50 83.46 84.51 80.82 5.53
Few-shot + Top-p-0.85 74.49 83.34 84.00 80.61 5.43
Few-shot + Top-p-0.95 74.19 83.16 84.56 80.64 5.70
Few-shot + Temp-0.6 74.48 83.23 84.53 80.75 5.53
Few-shot + Temp-0.8 74.27 82.94 83.78 80.33 4.84
Few-shot + Temp-0.9 74.26 82.97 84.69 80.64 5.95

Table 8: Comprehensive decoding strategy performance analysis. Best results per model are high-
lighted in bold, while best overall results per column are highlighted in green .
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Strategy Type Mean Acc. Std Dev. CV Range Recommendation
Phi4 Few-shot
Beam Search 81.23 0.12 0.001 0.5 Most reliable
Top-k Sampling 80.28 0.20 0.002 1.1 Good alternative
Top-p Sampling 80.69 0.18 0.002 0.8 Balanced performance
Temperature 80.57 0.21 0.003 0.9 Moderate variance

Gemma3 Few-shot
Beam Search 77.81 0.14 0.002 0.3 Consistent but lower
Top-k Sampling 77.70 0.11 0.001 0.5 Very consistent
Top-p Sampling 77.68 0.14 0.002 0.4 Stable performance
Temperature 77.70 0.08 0.001 0.2 Most consistent

Table 9: Decoding Strategy Robustness and Variance Analysis. CV = Coefficient of Variation (Std
Dev / Mean), Range = Max - Min across datasets. Highlighted cells indicate the best combination of
performance and stability.

D.2 POS Class Performance415

POS Class UDPipe Phi4 Few-shot Gemma3 Fine-tuned Gemma3 CLTF Improvement
PROPN 25.85 72.34 78.31 92.47 +66.62
NUM 28.92 61.39 91.89 86.01 +62.97
AUX 38.39 45.08 53.58 61.04 +22.65
PRON 45.80 52.77 76.38 81.51 +35.71
ADV 50.61 54.19 66.92 74.38 +23.77
SCONJ 52.94 54.73 57.97 94.62 +41.68
ADJ 65.29 72.05 71.17 73.58 +8.29
VERB 67.77 79.91 75.79 89.00 +21.23

DET 73.81 73.48 89.97 87.99 +16.16
NOUN 76.45 83.65 82.81 89.44 +12.99
CCONJ 83.06 81.72 86.67 96.34 +13.28
ADP 85.51 89.93 88.59 92.78 +7.27

Table 10: POS Class Performance (F1-scores) on NAF, for low performing (upper section) and high
performing (bottom section) classes. Best results per POS class are highlighted in green .

POS Class UDPipe Phi4 Few-shot Gemma3 Fine-tuned Gemma3 CLTF Improvement
ADJ 54.12 58.11 79.75 71.94 +25.63
ADV 51.19 58.79 77.30 72.93 +21.74
PRON 62.19 68.66 84.47 81.10 +22.28
DET 71.69 74.40 87.32 89.38 +17.69
PROPN 79.90 76.26 98.07 91.22 +18.17

NOUN 86.14 85.34 91.84 88.72 +5.70
VERB 91.31 93.55 92.29 87.91 +2.24
ADP 94.34 93.09 94.16 92.65 -0.18
CCONJ 95.02 95.86 98.89 96.22 +3.87

Table 11: POS Class Performance (F1-scores) on CAT, for low performing (upper section) and high
performing (bottom section) classes. Best results per POS class are highlighted in green .
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POS Class UDPipe Phi4 Few-shot Gemma3 Fine-tuned Gemma3 CLTF Improvement
NUM 48.78 60.87 83.33 88.04 +39.26
AUX 56.45 32.97 40.00 49.30 -7.15
ADJ 68.66 64.52 57.14 70.27 +1.61

ADV 75.59 77.83 64.15 74.02 +2.24
PROPN 76.19 66.67 75.00 90.47 +14.28
VERB 86.32 82.55 67.39 86.71 +0.39
PRON 88.50 76.66 83.72 79.90 -4.78
DET 91.79 82.72 76.47 89.25 -2.54
NOUN 92.88 90.87 89.51 88.29 -2.01
ADP 93.14 87.70 90.62 92.16 -0.98
CCONJ 93.99 89.42 91.30 95.65 +1.66

Table 12: POS Class Performance (F1-scores) on Chauliac, for low performing (upper section) and
high performing (bottom section) classes. Best results per POS class are highlighted in green .

E Evaluation metrics416

We assessed our model using several standard metrics, defined as follows.417

Accuracy Accuracy quantifies the proportion of correctly predicted POS tags relative to the total418

number of tags:419

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives,420

respectively.421

Precision Precision measures the fraction of correct POS tag predictions among all instances422

predicted as a given tag:423

Precision =
TP

TP + FP
. (2)

Recall Recall determines the proportion of actual POS tag instances that were correctly predicted:424

Recall =
TP

TP + FN
. (3)

F1-score The F1-score, representing the harmonic mean of precision and recall, is computed as:425

F1-score = 2 × Precision × Recall
Precision + Recall

. (4)
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